The NNPDF collaboration
The NNPDF collaboration performs research in the field of high-energy physics. The NNPDF collaboration determines the structure of the proton using contemporary methods of artificial intelligence. A precise knowledge of the so-called Parton Distribution Functions (PDFs) of the proton, which describe their structure in terms of their quark and gluon constituents, is a crucial ingredient of the physics program of the Large Hadron Collider of CERN.
The NNPDF code
The scientific output of the collaboration is freely available to the public through the arXiv, journal repositories, and software repositories. Along with this online documentation, we release the NNPDF code. The code is made available as an open-source package together with user-friendly examples and an extensive documentation presented here.
The code can be used to produce the ingredients needed for PDF fits, to run the fits themselves, and to analyse the results. This is the first framework used to produce a global PDF fit made publicly available, enabling for detailed external validation and reproducibility of the NNPDF4.0 analysis. Moreover, the code enables the user to explore a number of phenomenological applications, such as the assessment of the impact of new experimental data on PDFs, the effect of changes in theory settings on the resulting PDFs and a fast quantitative comparison between theoretical predictions and experimental data over a broad range of observables.
If you are a new user head along to Getting started and check out the Tutorials.
The NNPDF team
The NNPDF collaboration is currently composed of the following members:
Richard D. Ball - University of Edinburgh
Andrea Barontini - Università degli Studi di Milano and INFN
Alessandro Candido - Università degli Studi di Milano and INFN
Stefano Carrazza - Università degli Studi di Milano and INFN
Mark Costantini - University of Cambridge
Juan M. Cruz-Martinez - CERN
Luigi Del Debbio - University of Edinburgh
Stefano Forte - Università degli Studi di Milano and INFN
Tommaso Giani - Vrije University Amsterdam and Nikhef
Felix Hekhorn - Università degli Studi di Milano and INFN
José Ignacio Latorre - Quantum Research Centre, Technology Innovation Institute, Abu Dhabi, United Arab Emirates and Center for Quantum Technologies, National University of Singapore
Niccolò Laurenti - Università degli Studi di Milano and INFN
Giacomo Magni - Vrije University Amsterdam and Nikhef
Emanuele R. Nocera - Università degli Studi di Torino and INFN
Juan Rojo - Vrije University Amsterdam and Nikhef
Christopher Schwan - University of Würzburg
Tanishq Sharma - Università di Torino and INFN
Roy Stegeman - University of Edinburgh
Maria Ubiali - University of Cambridge
Former members of the NNPDF collaboration include
Rabah Abdul Khalek - Post-doc at Jefferson Lab, USA
Valerio Bertone - Post-doc at CEA Saclay, FR
Francesco Cerutti - Deployment of the Fly-Eye Telescope for NEO Survey - ESA/ASI
Christopher S. Deans
Alberto Guffanti - Data Scientist at PIVIGO, UK
Patrick Groth-Merrild
Nathan P. Hartland - Senior Data Analyst at Dott, NL
Shayan Iranipour - Quantitative Researcher at Tudor Investment Corporation, UK
Zahari Kassabov - Research Engineer, Opificio, London, UK
Rosalyn Pearson - Information Analyst at Public Health Scotland, UK
Andrea Piccione - High School Teacher at IPIA G. Piana, IT
Luca Rottoli - Post-doc at the University of Zurich, CH
Emma Slade - Senior AI/ML Engineer at GSK, UK
Cameron Voisey - Data Scientist at Privacy Hub by Datavant
Michael Wilson
The NNPDF publications
“The Path to N3LO Parton Distributions”, Richard D. Ball et al. [B+24c]
“Determination of the theory uncertainties from missing higher orders on NNLO parton distributions with percent accuracy”, Richard D. Ball et al. [B+24a]
“Photons in the proton: implications for the LHC”, Richard D. Ball et al. [B+24b]
“The intrinsic charm quark valence distribution of the proton”, Richard D. Ball et al. [BCCM+24a]
“Evidence for intrinsic charm quarks in the proton”, Richard D. Ball et al. [BCCM+22]
“Regularising experimental correlations in LHC data: theory and application to a global analysis of parton distributions”, Zahari Kassabov, Emanuele R. Nocera, Michael Wilson [KNW22]
“Bayesian approach to inverse problems: an application to NNPDF closure testing”, Luigi Del Debbio, Tommaso Giani, Michael Wilson [DDGW22]
“A data-based parametrization of parton distribution functions”, Stefano Carrazza, Juan Cruz-Martinez, Roy Stegeman [CCMS22]
“Correlation and combination of sets of parton distributions”, Richard D. Ball, Stefano Forte, Roy Stegeman [BFS21]
“The path to proton structure at 1% accuracy”, Richard D. Ball et al. [B+22a]
“An open-source machine learning framework for global analyses of parton distributions”, Richard D. Ball et al. [B+21a]
“Future tests of parton distributions”, Juan Cruz-Martinez, Stefano Forte, Emanuele R. Nocera [CMFN21]
“Deuteron Uncertainties in the Determination of Proton PDFs”, Richard D. Ball, Emanuele R. Nocera, Rosalyn L. Pearson, [BNP21]
“Parton Distribution Functions”, Stefano Carrazza, Stefano Forte [FC20]
“Phenomenology of NNLO jet production at the LHC and its impact on parton distributions”, Rabah Abdul Khalek, Stefano Forte, Thomas Gehrmann, Aude Gehrmann-De Ridder, Tommaso Giani, Nigel Glover, Alexander Huss, Emanuele R. Nocera, Joao Pires, Juan Rojo, Giovanni Stagnitto [AK+20]
“Why αs Cannot be Determined from Hadronic Processes without Simultaneously Determining the Parton Distributions”, Stefano Forte, Zahari Kassabov, [FK20]
“Single top production in PDF fits”, Emanuele R. Nocera, Maria Ubiali, Cameron Voisey, [NUV20]
“Parton Distributions with Theory Uncertainties: General Formalism and First Phenomenological Studies”, Rabah Abdul Khalek, Richard D. Ball, Stefano Carrazza, Stefano Forte, Tommaso Giani, Zahari Kassabov, Rosalyn L. Pearson, Emanuele R. Nocera, Juan Rojo, Luca Rottoli, Maria Ubiali, Cameron Voisey and Michael Wilson [AK+19a]
“Nuclear Parton Distributions from Lepton-Nucleus Scattering and the Impact of an Electron-Ion Collider”, Rabah Abdul Khalek, Jacob J. Ethier, Juan Rojo, [AKER19]
“A First Determination of Parton Distributions with Theoretical Uncertainties”, Rabah Abdul Khalek, Richard D. Ball, Stefano Carrazza, Stefano Forte, Tommaso Giani, Zahari Kassabov, Emanuele R. Nocera, Rosalyn L. Pearson, Juan Rojo, Luca Rottoli, Maria Ubiali, Cameron Voisey, and Michael Wilson [AK+19b]
“Towards a new generation of parton densities with deep learning models”, Stefano Carrazza and Juan Cruz-Martinez [CCM19]
“Parton distributions from high-precision collider data”, Richard D. Ball, Valerio Bertone, Stefano Carrazza, Luigi Del Debbio, Stefano Forte, Patrick Groth-Merrild, Alberto Guffanti, Nathan P. Hartland, Zahari Kassabov, Jose I. Latorre, Emanuele R. Nocera, Juan Rojo, Luca Rottoli, Emma Slade, and Maria Ubiali [B+17]
Contents
Bibliography
- AKER19
Rabah Abdul Khalek, Jacob J. Ethier, and Juan Rojo. Nuclear parton distributions from lepton-nucleus scattering and the impact of an electron-ion collider. Eur. Phys. J. C, 79(6):471, 2019. arXiv:1904.00018, doi:10.1140/epjc/s10052-019-6983-1.
- AK+19a
Rabah Abdul Khalek and others. A first determination of parton distributions with theoretical uncertainties. Eur. Phys. J., C:79:838, 2019. arXiv:1905.04311, doi:10.1140/epjc/s10052-019-7364-5.
- AK+19b
Rabah Abdul Khalek and others. Parton Distributions with Theory Uncertainties: General Formalism and First Phenomenological Studies. Eur. Phys. J. C, 79(11):931, 2019. arXiv:1906.10698, doi:10.1140/epjc/s10052-019-7401-4.
- AK+20
Rabah Abdul Khalek and others. Phenomenology of NNLO jet production at the LHC and its impact on parton distributions. Eur. Phys. J. C, 80(8):797, 2020. arXiv:2005.11327, doi:10.1140/epjc/s10052-020-8328-5.
- BCCM+22
Richard D. Ball, Alessandro Candido, Juan Cruz-Martinez, Stefano Forte, Tommaso Giani, Felix Hekhorn, Kirill Kudashkin, Giacomo Magni, and Juan Rojo. Evidence for intrinsic charm quarks in the proton. Nature, 608(7923):483–487, 2022. arXiv:2208.08372, doi:10.1038/s41586-022-04998-2.
- BCCM+24a
Richard D. Ball, Alessandro Candido, Juan Cruz-Martinez, Stefano Forte, Tommaso Giani, Felix Hekhorn, Giacomo Magni, Emanuele R. Nocera, Juan Rojo, and Roy Stegeman. Intrinsic charm quark valence distribution of the proton. Phys. Rev. D, 109(9):L091501, 2024. arXiv:2311.00743, doi:10.1103/PhysRevD.109.L091501.
- BDDF+10
Richard D. Ball, Luigi Del Debbio, Stefano Forte, Alberto Guffanti, Jose I. Latorre, Juan Rojo, and Maria Ubiali. Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties. JHEP, 05:075, 2010. arXiv:0912.2276, doi:10.1007/JHEP05(2010)075.
- BFS21
Richard D. Ball, Stefano Forte, and Roy Stegeman. Correlation and combination of sets of parton distributions. Eur. Phys. J. C, 81(11):1046, 2021. arXiv:2110.08274, doi:10.1140/epjc/s10052-021-09863-6.
- BNP21
Richard D. Ball, Emanuele R. Nocera, and Rosalyn L. Pearson. Deuteron Uncertainties in the Determination of Proton PDFs. Eur. Phys. J. C, 81(1):37, 2021. arXiv:2011.00009, doi:10.1140/epjc/s10052-020-08826-7.
- B+17
Richard D. Ball and others. Parton distributions from high-precision collider data. Eur. Phys. J. C, 77(10):663, 2017. arXiv:1706.00428, doi:10.1140/epjc/s10052-017-5199-5.
- B+21a
Richard D. Ball and others. An open-source machine learning framework for global analyses of parton distributions. Eur. Phys. J. C, 81(10):958, 2021. arXiv:2109.02671, doi:10.1140/epjc/s10052-021-09747-9.
- B+21b
Richard D. Ball and others. An open-source machine learning framework for global analyses of parton distributions. Eur. Phys. J. C, 81(10):958, 2021. arXiv:2109.02671, doi:10.1140/epjc/s10052-021-09747-9.
- B+22a
Richard D. Ball and others. The path to proton structure at 1% accuracy. Eur. Phys. J. C, 82(5):428, 2022. arXiv:2109.02653, doi:10.1140/epjc/s10052-022-10328-7.
- B+22b
Richard D. Ball and others. The path to proton structure at 1% accuracy. Eur. Phys. J. C, 82(5):428, 2022. arXiv:2109.02653, doi:10.1140/epjc/s10052-022-10328-7.
- B+24a
Richard D. Ball and others. Determination of the theory uncertainties from missing higher orders on NNLO parton distributions with percent accuracy. Eur. Phys. J. C, 84(5):517, 2024. arXiv:2401.10319, doi:10.1140/epjc/s10052-024-12772-z.
- B+24b
Richard D. Ball and others. Photons in the proton: implications for the LHC. Eur. Phys. J. C, 84(5):540, 2024. arXiv:2401.08749, doi:10.1140/epjc/s10052-024-12731-8.
- B+24c
Richard D. Ball and others. The path to $\hbox N^3\hbox LO$ parton distributions. Eur. Phys. J. C, 84(7):659, 2024. arXiv:2402.18635, doi:10.1140/epjc/s10052-024-12891-7.
- BCCM+24b
Andrea Barontini, Alessandro Candido, Juan M. Cruz-Martinez, Felix Hekhorn, and Christopher Schwan. Pineline: Industrialization of high-energy theory predictions. Comput. Phys. Commun., 297:109061, 2024. arXiv:2302.12124, doi:10.1016/j.cpc.2023.109061.
- CHM22
Alessandro Candido, Felix Hekhorn, and Giacomo Magni. EKO: evolution kernel operators. Eur. Phys. J. C, 82(10):976, 2022. arXiv:2202.02338, doi:10.1140/epjc/s10052-022-10878-w.
- CNSZ20
S. Carrazza, E. R. Nocera, C. Schwan, and M. Zaro. PineAPPL: combining EW and QCD corrections for fast evaluation of LHC processes. JHEP, 12:108, 2020. arXiv:2008.12789, doi:10.1007/JHEP12(2020)108.
- CCM19
Stefano Carrazza and Juan Cruz-Martinez. Towards a new generation of parton densities with deep learning models. Eur. Phys. J. C, 79(8):676, 2019. arXiv:1907.05075, doi:10.1140/epjc/s10052-019-7197-2.
- CCMS22
Stefano Carrazza, Juan M. Cruz-Martinez, and Roy Stegeman. A data-based parametrization of parton distribution functions. Eur. Phys. J. C, 82(2):163, 2022. arXiv:2111.02954, doi:10.1140/epjc/s10052-022-10136-z.
- CFKR16
Stefano Carrazza, Stefano Forte, Zahari Kassabov, and Juan Rojo. Specialized minimal PDFs for optimized LHC calculations. Eur. Phys. J. C, 76(4):205, 2016. arXiv:1602.00005, doi:10.1140/epjc/s10052-016-4042-8.
- CMFN21
Juan Cruz-Martinez, Stefano Forte, and Emanuele R. Nocera. Future tests of parton distributions. Acta Phys. Polon. B, 52:243, 2021. arXiv:2103.08606, doi:10.5506/APhysPolB.52.243.
- DDGW22
Luigi Del Debbio, Tommaso Giani, and Michael Wilson. Bayesian approach to inverse problems: an application to NNPDF closure testing. Eur. Phys. J. C, 82(4):330, 2022. arXiv:2111.05787, doi:10.1140/epjc/s10052-022-10297-x.
- FC20
Stefano Forte and Stefano Carrazza. Parton distribution functions. 8 2020. arXiv:2008.12305.
- FK20
Stefano Forte and Zahari Kassabov. Why $\alpha _s$ cannot be determined from hadronic processes without simultaneously determining the parton distributions. Eur. Phys. J. C, 80(3):182, 2020. arXiv:2001.04986, doi:10.1140/epjc/s10052-020-7748-6.
- Kas19
Zahari Kassabov. Reportengine: A framework for declarative data analysis. February 2019. URL: https://doi.org/10.5281/zenodo.2571601, doi:10.5281/zenodo.2571601.
- KNW22
Zahari Kassabov, Emanuele R. Nocera, and Michael Wilson. Regularising experimental correlations in LHC data: theory and application to a global analysis of parton distributions. Eur. Phys. J. C, 82(10):956, 2022. arXiv:2207.00690, doi:10.1140/epjc/s10052-022-10932-7.
- MNSZ16
Aneesh Manohar, Paolo Nason, Gavin P. Salam, and Giulia Zanderighi. How bright is the proton? A precise determination of the photon parton distribution function. Phys. Rev. Lett., 117(24):242002, 2016. arXiv:1607.04266, doi:10.1103/PhysRevLett.117.242002.
- MNSZ17
Aneesh V. Manohar, Paolo Nason, Gavin P. Salam, and Giulia Zanderighi. The Photon Content of the Proton. JHEP, 12:046, 2017. arXiv:1708.01256, doi:10.1007/JHEP12(2017)046.
- NUV20
Emanuele R. Nocera, Maria Ubiali, and Cameron Voisey. Single Top Production in PDF fits. JHEP, 05:067, 2020. arXiv:1912.09543, doi:10.1007/JHEP05(2020)067.