Notes on Perturbative Evolution and PDF flavor decomposition
AG & MU (with the help of Jacob Haddo, summer student)

Perturbative PDF evolution

Notation

  • The strong coupling constant

Define the coupling

\[a_{s} = \frac{\alpha_{s}(Q^{2})}{4\pi}\]
\[a_{0} = a_{s}(Q_{0}^{2})\]

which satisfies the Renormalisation Group Equation

\[\frac{da_{s}}{d\ln\mu^{2}} = \beta(a_{s}) = - \sum_{n = 0}^{\infty}\beta_{n}a_{s}^{n + 2}\,,\]

where

\[\beta_0 = \frac{11}{3}C_A - \frac{4}{3}T_FN_f\]
\[\beta_1 = \frac{34}{3}C^2_A - 4C_FT_FN_f - \frac{20}{3}C_AT_FN_f\]
\[\beta_2 = \frac{2857}{54}C^3_A + 2C^2_FT_FN_f - \frac{205}{9}C_FC_AT_FN_f - \frac{1415}{27}C^2_AT_FN_f - \frac{44}{9}C_FT^2_FN^2_f - \frac{158}{27}C_AT^2_FN^2_f.\]
  • Mellin transform

The Mellin transform of a function is defined as

\[f(N,Q^{2}) = \int_{0}^{1}dx\, x^{N - 1}f(x,Q^{2})\,,\]

and we can get back the x-space distribution as

\[f(x,Q^{2}) = \int_{c - i\infty}^{c + i\infty}\mspace{6mu}\frac{dN}{2\pi i}\, x^{- N}f(N,Q^{2})\,,\]

where the intercept c of integration contour is chosen to be to the right of all singularities of f(N,Q2) in the complex N plane.

Parton evolution

The scale dependence of the parton distribution functions is described by the renormalisation group equations for mass factorisation (DGLAP)

\[\mu^{2}\frac{\partial}{\partial\mu^{2}}f_{i}(x,\mu^{2}) = P_{ij}(x,\mu^{2}) \otimes f(x,\mu^{2})\,\]

where fi is the generic parton distribution function, Pij are the Altarelli-Parisi kernels and \(\otimes\) denotes the Mellin convolution

\[f(x) \otimes g(x) \equiv \int_{x}^{1}dyf(y)g\left( \frac{x}{y} \right)\]

We have a system of (2nf + 1) coupled integro-differential equations, where the summation over the parton species j is understood.

The NmLO approximation for the splitting functions \(P_{ij}(x,\mu^2)\)

\[P_{ij}^{N^{m}LO}(x,\mu^{2}) = \sum_{k = 0}^{m}a_{s}^{k + 1}(\mu^{2})P_{ij}^{(k)}(x)\]

where we note that the only dependence on the scale \(\mu^2\) is through the coupling constant \(a_s(\mu^2)\). The splitting functions in the case of unpolarised partons are known up to NNLO and, in the notation we adopt, their explicit expressions are found in .

In the following, to describe the solution to the DGLAP evolution equations we will be working in Mellin space where, as we have seen, convolutions are turned into products.

  • Flavour decomposition

The primary quantities are the \(2n_f\) quark and antiquark distributions qi(x,Q2), Qi(x,Q2) and the gluon distribution g(x,Q2).

From considerations based on charge conjugation and flavour symmetry it is possible to rewrite the system of equations as \((2N_f - 1)\) equations describing the independent evolution of the non-singlet quark asymmetries and

\[q_{NS,ij}^\pm = q_i \pm Q_i - (q_j \pm Q_j)\]
\[q_{NS}^v = \sum_{i = 1}^{N_f}(q_i - Q_i)\]

and a system of 2 equations describing the coupled evolution of the singlet and gluon parton distributions.

\[\begin{split}\begin{matrix} \mu^{2}\frac{\partial}{\partial\mu^{2}}q_{NS}^{\pm ,v}(x,\mu^{2}) & = & P_{NS}^{\pm ,v} \otimes q_{NS}^{\pm ,v}(x,\mu^{2}) \\ \mu^{2}\frac{\partial}{\partial\mu^{2}}\begin{pmatrix} \Sigma \\ g \\ \end{pmatrix}(x,\mu^{2}) & = & \begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \\ \end{pmatrix} \otimes \begin{pmatrix} \Sigma \\ g \\ \end{pmatrix}(x,\mu^{2}) \\ \end{matrix}\end{split}\]

where the singlet combination, \(\Sigma\), is defined as

\[\Sigma = \sum_{i = 1}^{N_{f}}(q_{i} + {\overline{q}}_{i})\,,\]

where \(N_{f}\) is the number of light flavors, i.e. the number of flavors with \(m_{q}^{2} < Q^{2}\).

At LO \(P_{NS}^{(0), +} = P_{NS}^{(0), -} = P_{NS}^{(0),v} = P_{qq}^{(0)}\). At NLO \(P_{NS}^{(0), -} = P_{NS}^{(0),v}\) while all the other splitting functions are different. Starting form \(\mathcal{O}(\alpha_s^2)\) all splitting functions are different from each other.

The evolution of the individual quark distributions with the scale can be computed by introducing the following set of non-singlet distributions:

\[\begin{split}\begin{matrix} V & = & u^{-} + d^{-} + s^{-} + c^{-} + b^{-} + t^{-} \\ \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} V_{3} & = & u^{-} - d^{-} \\ \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} V_{8} & = & u^{-} + d^{-} - 2s^{-} \\ \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} V_{15} & = & u^{-} + d^{-} + s^{-} - 3c^{-} \\ \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} V_{24} & = & u^{-} + d^{-} + s^{-} + c^{-} - 4b^{-} \\ \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} V_{35} & = & u^{-} + d^{-} + s^{-} + c^{-} + b^{-} - 5t^{-} \\ \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} T_{3} & = & u^{+} - d^{+} \\ \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} T_{8} & = & u^{+} + d^{+} - 2s^{+} \\ \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} T_{15} & = & u^{+} + d^{+} + s^{+} - 3c^{+} \\ \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} T_{24} & = & u^{+} + d^{+} + s^{+} + c^{+} - 4b^{+} \\ \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} T_{35} & = & u^{+} + d^{+} + s^{+} + c^{+} + b^{+} - 5t^{+} \\ \end{matrix}\end{split}\]

where \(q_{i}^{\pm} = q_{i} \pm {\overline{q}}_{i}\), and \(u,d,s,c,b,t\) are the various flavour distributions.

The combinations \(V_{j}\) and \(T_{j}\) evolve according to eq. ([eq:DGLAPdecomp]) with \(P_{NS}^{-}\) and \(P_{NS}^{+}\) respectively, while the total valence \(V\) evolves with the \(P_{NS}^{v}\) kernel. Inverting the linear system Eq.[eq:lincomb] we obtain the individual pdf’s as a function of the evolved non-singlet and singlet distributions:

\[\begin{split}\begin{matrix} u & = & (10\Sigma + 30T_{3} + 10T_{8} + 5T_{15} + 3T_{24} + 2T_{35} + 10V + 30V_{3} + 10V_{8} + 5V_{15} + 3V_{24} + 2V_{35})/120 \\ \overline{u} & = & (10\Sigma + 30T_{3} + 10T_{8} + 5T_{15} + 3T_{24} + 2T_{35} - 10V - 30V_{3} - 10V_{8} - 5V_{15} - 3V_{24} - 2V_{35})/120 \\ d & = & (10\Sigma - 30T_{3} + 10T_{8} + 5T_{15} + 3T_{24} + 2T_{35} + 10V - 30V_{3} + 10V_{8} + 5V_{15} + 3V_{24} + 2V_{35})/120 \\ \overline{d} & = & (10\Sigma - 30T_{3} + 10T_{8} + 5T_{15} + 3T_{24} + 2T_{35} - 10V + 30V_{3} - 10V_{8} - 5V_{15} - 3V_{24} - 2V_{35})/120 \\ s & = & (10\Sigma - 20T_{8} + 5T_{15} + 3T_{24} + 2T_{35} + 10V - 20V_{8} + 5V_{15} + 3V_{24} + 2V_{35})/120 \\ \overline{s} & = & (10\Sigma - 20T_{8} + 5T_{15} + 3T_{24} + 2T_{35} - 10V + 20V_{8} - 5V_{15} - 3V_{24} - 2V_{35})/120 \\ c & = & (10\Sigma - 15T_{15} + 3T_{24} + 2T_{35} + 10V - 15V_{15} + 3V_{24} + 2V_{35})/120 \\ \overline{c} & = & (10\Sigma - 15T_{15} + 3T_{24} + 2T_{35} - 10V + 15V_{15} - 3V_{24} - 2V_{35})/120 \\ b & = & (5\Sigma - 6T_{24} + T_{35} + 5V - 6V_{24} + V_{35})/60 \\ \overline{b} & = & (5\Sigma - 6T_{24} + T_{35} - 5V + 6V_{24} - V_{35})/60 \\ t & = & (\Sigma - T_{35} + V - V_{35})/12 \\ \overline{t} & = & (\Sigma - T_{35} - V + V_{35})/12 \\ \end{matrix}\end{split}\]
  • Scale variation in splitting functions

The evolution equations presented in the previous subsections assume that all scales are the same, in particular that the renormalization \(\mu_{R}^{2}\) and factorization scales \(\mu_{F}^{2}\) are the same that the hard scale of the problem \(\mu^{2}\),

\[\mu_{R}^{2} = \mu_{F}^{2} = \mu^{2}\ .\]

However, if this is not the case, Eq. [eq:pmlo] has to be modified as follows:

  • Singlet case : up to NNLO one has

\[\mathbf{P}(x, \alpha_s(\mu^2_R), L_R) = \alpha_s(\mu^2_R)\mathbf{P}^{(0)}(x) + \alpha^2_s(\mu^2_R)[\mathbf{P}^{(1)}(x) - \beta_0L_R\mathbf{P}^{(0)}(x)] +\alpha^3_s(\mu^2_R)[\mathbf{P}^{(2)}(x) - 2\beta_0L_R\mathbf{P}^{(1)}(x) - (\beta_1L_R - \beta^2_0L^2_R)\mathbf{P}^{(0)}(x)]\]
  • with \(\mathbf{P}^{(k)}\) the matrix of singlet splitting functions (in the \(\mu_{R}^{2} = \mu_{F}^{2} = \mu^{2}\) case ) as defined in Eq. [eq:DGLAPdecomp], and where we have defined \(L_{R} \equiv \frac{\mu_{F}^{2}}{\mu_{R}^{2}}\) as the ratio of factorization and renormalization scales. Note that the strong coupling is evaluated at the renormalization scale \(\mu_{R}^{2}\).

  • Non-singlet case . In analogy with the singlet case, up to NNLO one has

\[P^{\pm, v}_{NS}(x, \alpha_s(\mu^2_R), L_R) = \alpha_s(\mu^2_R)P^{\pm, v(0)}_{NS}(x) + \alpha^2_s(\mu^2_R)[P^{\pm, v(1)}_{NS}(x) - \beta_0L_RP^{\pm, v(0)}_{NS}(x)] + \alpha^3_s(\mu^2_R)[P^{\pm, v(2)}_{NS}(x) - 2\beta_0L_RP^{\pm, v(1)}_{NS}(x) - (\beta_1L_R - \beta^2_0L^2_R)P^{\pm,v(0)}_{NS}(x)]\]
  • with the same conventions as in the singlet case and where the various combinations of non-singlet quark densities and associated splitting functions have been defined in Eq. [eq:nonsinglet]. Note that at NLO one has some simplifications:

\[P^{\pm, v}_{NS}(x, \alpha_s(\mu^2_R), L_R) = \alpha_s(\mu^2_R)P^{(0)}_{NS}(x) + \alpha^2_s(\mu^2_R)[P^{\pm(1)}_{NS}(x) - \beta_0L_RP^{(0)}_{NS}(x)]\]

The DGLAP evolution equations with variations of the renormalization scale can be benchmarked againts the usual LH tables.

  • Scale variation in the coefficient functions

Analogously to what we have done in the previous subsection, in the following we write the expressions of the NLO coefficient functions \(C_{2,L,3}^{q,g}\) in the \(\overline{MS}\) scheme showing explicitly the dependence on the factorization and renormalization scales, \(\mu_{r}^{2}\) and \(\mu_{f}^{2}\).

\[C_{a}^{\pm}(N,\alpha_{s}(\mu_{f}^{2}),Q^{2}/\mu_{r}^{2},\mu_{f}^{2}/\mu_{r}^{2}) = 1 + a_{s}(\mu_{r}^{2})\left\lbrack c_{a,NS}^{(1)}(N) + \gamma_{NS}^{(0)}(N)\log\left( \frac{Q^{2}}{\mu_{f}^{2}} \right) \right\rbrack + \mathcal{O}(a_{s}^{2})\]
\[\begin{split}\begin{matrix} S_{1}(N) & = & \gamma_{E} + \Psi(N + 1) \\ S_{2}(N) & = & \zeta_{2} - \Psi\prime(N + 1,1). \\ \end{matrix}\end{split}\]

we can write down the explicit expression for all the NLo coefficient functions:

\[C_2^{NS}(N,a_s(\mu_r^2),Q^2/\mu_f^2) = 1 + a_s(\mu_r^2)\cdot C_F\bigg[2S_1(N)^2 - 2 S_2(N) + 3S_1(N) - 2\frac{S_1(N)}{N(N+1)}+\frac{3}{N}+\frac{4}{N+1}+\frac{2}{N^2}-9 +\log(\frac{Q^2}{\mu_f^2})(3 - 4 S_1(N) +\frac{2}{N(N+1)}\bigg]\]
\[C_2^q(N,a_s(\mu_r^2),Q^2/\mu_f^2) = C_2^{NS}(N,a_s(\mu_r^2),Q^2/\mu_f^2)\]
\[C_2^g(N,a_s(\mu_r^2),Q^2/\mu_f^2) = a_s(\mu_r^2)\cdot 4n_fT_R\bigg[\frac{4}{N+1} - \frac{4}{N+2} - (1+S_1(N))\cdot \frac{N^2+N+2}{N(N+1)(N+2)}+\frac{1}{N_1} +\log(\frac{Q^2}{\mu_f^2})\frac{N^2+N+2}{N(N+1)(N+2)}\bigg]\]
\[C_L^{NS}(N,a_s(\mu_r^2)) = a_s(\mu_r^2)\cdot C_F \frac{4}{N+1}\]
\[C_L^q(N,a_s(\mu_r^2)) = C_L^{NS}(N,a_s(\mu_r^2))\]
\[C_L^g(N,a_s(\mu_r^2)) = a_s(\mu_r^2)\cdot 4n_fT_R \frac{4}{(N+1)(N+2)}\]
\[C_3^{NS}(N,a_s(\mu_r^2),Q^2/\mu_f^2) = 1 + a_s(\mu_r^2)\cdot C_F\bigg[2S_1(N)^2 - 2 S_2(N) + 3S_1(N)- 2\frac{S_1(N)}{N(N+1)} +\frac{3}{N}+\frac{4}{N+1} +\frac{2}{N^2}-9 -\frac{4N+2}{N(N+1)} +\log(\frac{Q^2}{\mu_f^2})(3 - 4 S_1(N) +\frac{2}{N(N+1)})\bigg]\]
  • Implementation of the heavy quarks

In our code the heavy quark PDF’s are generated radiatively in the ZM-VFN scheme. We consider explicitely two cases: evolution starting at the charm threshold and forward evolution from a scale below the charm threshold. We will write explicitely all equations implemented into the code.

  • Case I: \(Q_{0}^{2} \equiv m_{c}^{2}\) If \(Q_{0}^{2} = m_{c}^{2}\), the \(T_{15}\) parton distribution function evolves from the initial scale to any final scale \(Q^{2} > m_{c}^{2}\) according to the NS evolution equation:

\[T_{15}(Q^{2},x) = \Gamma_{NS}^{+}(Q_{0}^{2},Q^{2},x) \otimes T_{15}(Q_{0}^{2},x).\]
  • Instead the \(T_{24}\) parton distribution defined in Eq. (15) coincides with the Singlet distribution up to the bottom threshold, while above the threshold it evolves according to the NS evolution equation. Therefore for \(Q^{2} > m_{b}^{2}\) :

\[\begin{split}\begin{matrix} T_{24}(m_{b}^{2},x) & = & \Sigma(m_{b}^{2},x) = \Gamma_{S,qq}(Q_{0}^{2},m_{b}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,qg}(Q_{0}^{2},m_{b}^{2},x) \otimes g(Q_{0}^{2},x) \\ T_{24}(Q^{2},x) & = & \Gamma_{NS}^{+}(m_{b}^{2},Q^{2},x) \otimes T_{24}(m_{b}^{2},x) \\ & = & \Gamma_{NS}^{+}(m_{b}^{2},Q^{2},x) \otimes \lbrack\Gamma_{S,qq}(Q_{0}^{2},m_{b}^{2},x) \otimes \Sigma(Q_{0}^{2},x) \\ & + & \Gamma_{S,qg}(Q_{0}^{2},m_{b}^{2},x) \otimes g(Q_{0}^{2},x)\rbrack \\ \end{matrix}\end{split}\]
  • In our code we have defined \(\Gamma_{NS}^{q,24}\) and \(\Gamma_{NS}^{g,24}\) as the evolution kernel products which multiply respectively the initial singlet and gluon distributions:

\[\begin{split}\begin{matrix} \Gamma_{NS}^{q,24}(Q_{0}^{2},Q^{2},N) & = & \Gamma_{NS}^{+}(m_{b}^{2},Q^{2},N)\Gamma_{S,qq}(Q_{0}^{2},m_{b}^{2},N) \\ \Gamma_{NS}^{g,24}(Q_{0}^{2},Q^{2},N) & = & \Gamma_{NS}^{+}(m_{b}^{2},Q^{2},N)\Gamma_{S,qg}(Q_{0}^{2},m_{b}^{2},N) \\ \end{matrix}\end{split}\]
  • In the same way we can write explicitely the evolution of the \(T_{35}\) parton distribution function up to a scale \(Q^{2} > m_{t}^{2}\):

\[\begin{split}\begin{matrix} T_{35}(m_{b}^{2},x) & = & \Sigma(m_{b}^{2},x) = \Gamma_{S,qq}(Q_{0}^{2},m_{b}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,qg}(Q_{0}^{2},m_{b}^{2},x) \otimes g(Q_{0}^{2},x) \\ T_{35}(m_{t}^{2},x) & = & \Sigma(m_{t}^{2},x) = \Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},x) \otimes \Sigma(m_{b}^{2},x) + \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},x) \otimes g(m_{b}^{2},x) \\ & = & \Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},x) \otimes \left\lbrack \Gamma_{S,qq}(Q_{0}^{2},m_{b}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,qg}(Q_{0}^{2},m_{b}^{2},x) \otimes g(Q_{0}^{2},x) \right\rbrack \\ & + & \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},x) \otimes \left\lbrack \Gamma_{S,gq}(Q_{0}^{2},m_{b}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,gg}(Q_{0}^{2},m_{b}^{2},x) \otimes g(Q_{0}^{2},x) \right\rbrack \\ T_{35}(Q^{2},x) & = & \Gamma_{NS}^{+}(m_{t}^{2},Q^{2},x) \otimes \Sigma(m_{t}^{2},x) \\ & = & \Gamma_{NS}^{+}(m_{t}^{2},Q^{2},x) \\ & \otimes & \{\lbrack\Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},x) \otimes \Gamma_{S,qq}(Q_{0}^{2},m_{b}^{2},x) + \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},x) \otimes \Gamma_{S,gq}(Q_{0}^{2},m_{b}^{2},x)\rbrack \otimes \Sigma(Q_{0}^{2},x) \\ & + & \lbrack\Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},x) \otimes \Gamma_{S,qg}(Q_{0}^{2},m_{b}^{2},x) + \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},x) \otimes \Gamma_{S,gg}(Q_{0}^{2},m_{b}^{2},x)\rbrack \otimes g(Q_{0}^{2},x)\} \\ \end{matrix}\end{split}\]
  • In our code we have defined \(\Gamma_{NS}^{q,35}\) and \(\Gamma_{NS}^{g,35}\) as the evolution kernel products which appear respectively in front of the initial singlet and gluon distribution:

\[\begin{split}\begin{matrix} \Gamma_{NS}^{q,35}(Q_{0}^{2},Q^{2},N) & = & \Gamma_{NS}^{+}(m_{t}^{2},Q^{2},N)\lbrack\Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},N)\Gamma_{S,qq}(Q_{0}^{2},m_{b}^{2},N) \\ & + & \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},N)\Gamma_{S,gq}(Q_{0}^{2},m_{b}^{2},N)\rbrack \\ \Gamma_{NS}^{g,35}(Q_{0}^{2},Q^{2},N) & = & \Gamma_{NS}^{+}(m_{t}^{2},Q^{2},N)\lbrack\Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},N)\Gamma_{S,qg}(Q_{0}^{2},m_{b}^{2},N) \\ & + & \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},N)\Gamma_{S,gg}(Q_{0}^{2},m_{b}^{2},N)\rbrack \\ \end{matrix}\end{split}\]
  • As far as the \(V_{J}\) sector is concerned we must proceed in the same way. Namely, if \(Q_{0}^{2} = m_{c}^{2}\), the \(V_{15}\) parton distribution function evolves from the initial scale to any final scale \(Q^{2} > m_{c}^{2}\) according to the NS minus evolution equation:

\[V_{15}(Q^{2},x) = \Gamma_{NS}^{-}(Q_{0}^{2},Q^{2},x) \otimes V_{15}(Q_{0}^{2},x).\]
  • Instead the \(V_{24}\) parton distribution defined in Eq. (15) coincides with the total valence distribution \(V\) up to the bottom threshold, while above the threshold it evolves according with the minus evolution kernel. Therefore for \(Q^{2} > m_{b}^{2}\) :

\[\begin{split}\begin{matrix} V_{24}(m_{b}^{2},x) & = & V(m_{b}^{2},x) = \Gamma_{NS}^{v}(Q_{0}^{2},m_{b}^{2},x) \otimes V(Q_{0}^{2},x) \\ V_{24}(Q^{2},x) & = & \Gamma_{NS}^{-}(m_{b}^{2},Q^{2},x) \otimes V_{24}(m_{b}^{2},x) \\ & = & \Gamma_{NS}^{-}(m_{b}^{2},Q^{2},x) \otimes \Gamma_{NS}^{v}(Q_{0}^{2},m_{b}^{2},x) \otimes V(Q_{0}^{2},x) \\ \end{matrix}\end{split}\]
  • For a NLO evolution \(\Gamma_{NS}^{-} = \Gamma_{NS}^{v}\), therefore there would not be no need of introducing new evolution kernels. However, if we want to build a structure for the code which can be easily used for a NNLO evolution code we should define, as well as the \(\Gamma_{NS}^{q,24}\) and \(\Gamma_{NS}^{g,24}\) kernels, a \(\Gamma_{NS}^{- ,24}\) kernel as:

\[\Gamma_{NS}^{- ,24}(Q_{0}^{2},Q^{2},N) = \Gamma_{NS}^{-}(m_{b}^{2},Q^{2},N)\Gamma_{NS}^{v}(Q_{0}^{2},m_{b}^{2},N)\]
  • In the same way we can write explicitely the evolution of the \(V_{35}\) parton distribution function up to a scale \(Q^{2} > m_{t}^{2}\):

\[\begin{split}\begin{matrix} V_{35}(m_{t}^{2},x) & = & V(m_{t}^{2},x) = \Gamma_{NS}^{v}(Q_{0}^{2},m_{t}^{2},x) \otimes V(Q_{0}^{2},x) \\ T_{35}(Q^{2},x) & = & \Gamma_{NS}^{-}(m_{t}^{2},Q^{2},x) \otimes V(m_{t}^{2},x) \\ & = & \Gamma_{NS}^{-}(m_{t}^{2},Q^{2},x)\Gamma_{NS}^{v}(Q_{0}^{2},m_{t}^{2},x) \otimes V(Q_{0}^{2},x) \\ \end{matrix}\end{split}\]
  • In our code we must define \(\Gamma_{NS}^{- ,35}\) as

\[\Gamma_{NS}^{- ,35}(Q_{0}^{2},Q^{2},N) = \Gamma_{NS}^{-}(m_{t}^{2},Q^{2},N)\Gamma_{NS}^{v}(m_{t}^{2},Q^{2},N)\]
  • Case II: general case \(Q_{0}^{2} < m_{c}^{2}\)

  • If \(Q^{2} > m_{c}^{2}\) the \(T_{15}\) parton distribution function coincides with the Singlet distribution up to the bottom threshold, while above the threshold it evolves according to the NS evolution equation:

\[\begin{split}\begin{matrix} T_{15}(m_{c}^{2},x) & = & \Sigma(m_{c}^{2},x) = \Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},x) \otimes g(Q_{0}^{2},x) \\ T_{15}(Q^{2},x) & = & \Gamma_{NS}^{+}(m_{c}^{2},Q^{2},x) \otimes T_{15}(m_{c}^{2},x) \\ & = & \Gamma_{NS}^{+}(m_{c}^{2},Q^{2},x) \otimes \lbrack\Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},x) \otimes \Sigma(Q_{0}^{2},x) \\ & + & \Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},x) \otimes g(Q_{0}^{2},x)\rbrack \\ \end{matrix}\end{split}\]
  • In our code we define \(\Gamma_{NS}^{q,15}\) and \(\Gamma_{NS}^{g,15}\) as the evolution kernel products which multiply the initial singlet and gluon distributions:

\[\begin{split}\begin{matrix} \Gamma_{NS}^{q,15}(Q_{0}^{2},Q^{2},N) & = & \Gamma_{NS}^{+}(m_{c}^{2},Q^{2},N)\Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},N) \\ \Gamma_{NS}^{g,15}(Q_{0}^{2},Q^{2},N) & = & \Gamma_{NS}^{+}(m_{c}^{2},Q^{2},N)\Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},N) \\ \end{matrix}\end{split}\]
  • In the same way, if \(Q^{2} > m_{b}^{2}\) the \(T_{24}\) parton distribution is not just \(\Sigma\) but it coincides with the Singlet distribution up to the bottom threshold, while above the threshold it evolves according to the NS evolution equation:

\[\begin{split}\begin{matrix} T_{24}(m_{c}^{2},x) & = & \Sigma(m_{c}^{2},x) = \Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},x) \otimes g(Q_{0}^{2},x) \\ T_{24}(m_{b}^{2},x) & = & \Sigma(m_{b}^{2},x) = \Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},x) \otimes \Sigma(m_{c}^{2},x) + \Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},x) \otimes g(m_{c}^{2},x) \\ & = & \Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},x) \otimes \left\lbrack \Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},x) \otimes g(Q_{0}^{2},x) \right\rbrack \\ & + & \Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},x) \otimes \left\lbrack \Gamma_{S,gq}(Q_{0}^{2},m_{c}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,gg}(Q_{0}^{2},m_{c}^{2},x) \otimes g(Q_{0}^{2},x) \right\rbrack \\ T_{24}(Q^{2},x) & = & \Gamma_{NS}^{+}(m_{b}^{2},Q^{2},x) \otimes T_{24}(m_{b}^{2},x) \\ & = & \Gamma_{NS}^{+}(m_{b}^{2},Q^{2},x) \\ & \otimes & \{\lbrack\Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},x) \otimes \Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},x) + \Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},x) \otimes \Gamma_{S,gq}(Q_{0}^{2},m_{c}^{2},x)\rbrack \otimes \Sigma(Q_{0}^{2},x) \\ & + & \lbrack\Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},x) \otimes \Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},x) + \Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},x) \otimes \Gamma_{S,gg}(Q_{0}^{2},m_{c}^{2},x)\rbrack \otimes g(Q_{0}^{2},x)\} \\ \end{matrix}\end{split}\]
  • In our code we have defined \(\Gamma_{NS}^{q,24}\) and \(\Gamma_{NS}^{g,24}\) as the evolution kernel products which multiply initial singlet and gluon distributions:

\[\begin{split}\begin{matrix} \Gamma_{NS}^{q,24}(Q_{0}^{2},Q^{2},N) & = & \Gamma_{NS}^{+}(m_{b}^{2},Q^{2},N)\lbrack\Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},N)\Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},N) \\ & + & \Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},N)\Gamma_{S,gq}(Q_{0}^{2},m_{c}^{2},N)\rbrack \\ \Gamma_{NS}^{g,24}(Q_{0}^{2},Q^{2},N) & = & \Gamma_{NS}^{+}(m_{b}^{2},Q^{2},N)\lbrack\Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},N)\Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},N) \\ & + & \Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},N)\Gamma_{S,gg}(Q_{0}^{2},m_{c}^{2},N)\rbrack \\ \end{matrix}\end{split}\]
  • Finally, if \(Q^{2} > m_{b}^{2}\) the \(T_{35}\) parton distribution is not just \(\Sigma\) but it coincides with the Singlet distribution up to the top threshold, while above the threshold it evolves according to the NS evolution equation:

\[\begin{split}\begin{matrix} T_{35}(m_{c}^{2},x) & = & \Sigma(m_{c}^{2},x) = \Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},x) \otimes g(Q_{0}^{2},x) \\ T_{35}(m_{b}^{2},x) & = & \Sigma(m_{b}^{2},x) = \Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},x) \otimes \Sigma(m_{c}^{2},x) + \Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},x) \otimes g(m_{c}^{2},x) \\ & = & \Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},x) \otimes \left\lbrack \Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},x) \otimes g(Q_{0}^{2},x) \right\rbrack \\ & + & \Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},x) \otimes \left\lbrack \Gamma_{S,gq}(Q_{0}^{2},m_{c}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,gg}(Q_{0}^{2},m_{c}^{2},x) \otimes g(Q_{0}^{2},x) \right\rbrack \\ T_{35}(m_{t}^{2},x) & = & \Sigma(m_{t}^{2},x) = \Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},x) \otimes \Sigma(m_{b}^{2},x) + \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},x) \otimes g(m_{b}^{2},x) \\ & = & \Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},x) \otimes \\ & & \{\Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},x) \otimes \left\lbrack \Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},x) \otimes g(Q_{0}^{2},x) \right\rbrack \\ & + & \Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},x) \otimes \left\lbrack \Gamma_{S,gq}(Q_{0}^{2},m_{c}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,gg}(Q_{0}^{2},m_{c}^{2},x) \otimes g(Q_{0}^{2},x) \right\rbrack\} \\ & + & \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},x) \otimes \\ & & \{\Gamma_{S,gq}(m_{c}^{2},m_{b}^{2},x) \otimes \left\lbrack \Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},x) \otimes g(Q_{0}^{2},x) \right\rbrack \\ & + & \Gamma_{S,gg}(m_{c}^{2},m_{b}^{2},x) \otimes \left\lbrack \Gamma_{S,gq}(Q_{0}^{2},m_{c}^{2},x) \otimes \Sigma(Q_{0}^{2},x) + \Gamma_{S,gg}(Q_{0}^{2},m_{c}^{2},x) \otimes g(Q_{0}^{2},x) \right\rbrack\} \\ T_{35}(Q^{2},x) & = & \Gamma_{NS}^{+}(m_{t}^{2},Q^{2},x) \otimes T_{35}(m_{t}^{2},x) \\ & = & \Gamma_{NS}^{+}(m_{t}^{2},Q^{2},x) \otimes \\ & & \{\lbrack\Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},x) \otimes \Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},x) \otimes \Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},x) \\ & + & \Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},x) \otimes \Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},x) \otimes \Gamma_{S,gq}(Q_{0}^{2},m_{c}^{2},x) \\ & + & \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},x) \otimes \Gamma_{S,gq}(m_{c}^{2},m_{b}^{2},x) \otimes \Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},x) \\ & + & \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},x) \otimes \Gamma_{S,gg}(m_{c}^{2},m_{b}^{2},x) \otimes \Gamma_{S,gq}(Q_{0}^{2},m_{c}^{2},x)\rbrack \otimes \Sigma(Q_{0}^{2},x) \\ & + & \lbrack\Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},x) \otimes \Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},x) \otimes \Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},x) \\ & + & \Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},x) \otimes \Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},x) \otimes \Gamma_{S,gg}(Q_{0}^{2},m_{c}^{2},x) \\ & + & \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},x) \otimes \Gamma_{S,gq}(m_{c}^{2},m_{b}^{2},x) \otimes \Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},x) \\ & + & \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},x) \otimes \Gamma_{S,gg}(m_{c}^{2},m_{b}^{2},x) \otimes \Gamma_{S,gg}(Q_{0}^{2},m_{c}^{2},x)\rbrack \otimes g(Q_{0}^{2},x)\} \\ \end{matrix}\end{split}\]
  • In our code we have defined \(\Gamma_{NS}^{q,35}\) and \(\Gamma_{NS}^{g,35}\) the evolution kernel products which multiply the initial singlet and gluon distributions:

\[\begin{split}\begin{matrix} \Gamma_{NS}^{q,35}(Q_{0}^{2},Q^{2},N) & = & \Gamma_{NS}^{+}(m_{t}^{2},Q^{2},N)\lbrack\Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},N)\Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},N)\Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},N) \\ & + & \Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},N)\Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},N)\Gamma_{S,gq}(Q_{0}^{2},m_{c}^{2},N) \\ & + & \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},N)\Gamma_{S,gq}(m_{c}^{2},m_{b}^{2},N)\Gamma_{S,qq}(Q_{0}^{2},m_{c}^{2},N) \\ & + & \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},N)\Gamma_{S,gg}(m_{c}^{2},m_{b}^{2},N)\Gamma_{S,gq}(Q_{0}^{2},m_{c}^{2},N)\rbrack \\ \Gamma_{NS}^{g,35}(Q_{0}^{2},Q^{2},N) & = & \Gamma_{NS}^{+}(m_{t}^{2},Q^{2},N)\lbrack\Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},N)\Gamma_{S,qq}(m_{c}^{2},m_{b}^{2},N)\Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},N) \\ & + & \Gamma_{S,qq}(m_{b}^{2},m_{t}^{2},N)\Gamma_{S,qg}(m_{c}^{2},m_{b}^{2},N)\Gamma_{S,gg}(Q_{0}^{2},m_{c}^{2},N) \\ & + & \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},N)\Gamma_{S,gq}(m_{c}^{2},m_{b}^{2},N)\Gamma_{S,qg}(Q_{0}^{2},m_{c}^{2},N) \\ & + & \Gamma_{S,qg}(m_{b}^{2},m_{t}^{2},N)\Gamma_{S,gg}(m_{c}^{2},m_{b}^{2},N)\Gamma_{S,gg}(Q_{0}^{2},m_{c}^{2},N)\rbrack \\ \end{matrix}\end{split}\]
  • The same must be done for the \(V\) sector. If \(Q^{2} > m_{c}^{2}\) the \(TV_{15}\) parton distribution function coincides with the Total Valence distribution up to the bottom threshold, while above the threshold it evolves according to the NS evolution equation:

\[\begin{split}\begin{matrix} V_{15}(m_{c}^{2},x) & = & V(m_{c}^{2},x) = \Gamma_{NS}^{v} \otimes V(Q_{0}^{2},x) \\ V_{15}(Q^{2},x) & = & \Gamma_{NS}^{-}(m_{c}^{2},Q^{2},x) \otimes V_{15}(m_{c}^{2},x) \\ & = & \Gamma_{NS}^{-}(m_{c}^{2},Q^{2},x) \otimes \Gamma_{NS}^{v} \otimes V(Q_{0}^{2},x) \\ \end{matrix}\end{split}\]
  • In our code we must define \(\Gamma_{NS}^{- ,15}\) as:

\[\Gamma_{NS}^{- ,15}(Q_{0}^{2},Q^{2},N) = \Gamma_{NS}^{-}(m_{c}^{2},Q^{2},N)\Gamma_{NS}^{v}(Q_{0}^{2},m_{c}^{2},N)\]
  • In the same way, if \(Q^{2} > m_{b}^{2}\) the \(V_{24}\) parton distribution coincides with the Total valence distribution up to the bottom threshold, while above the threshold it evolves according to the NS minus evolution equation:

\[\begin{split}\begin{matrix} V_{24}(m_{b}^{2},x) & = & V(m_{b}^{2},x) = \Gamma_{NS}^{v}(Q_{0}^{2},m_{b}^{2},x) \otimes V(Q_{0}^{2},x) \\ V_{24}(Q^{2},x) & = & \Gamma_{NS}^{-}(m_{b}^{2},Q^{2},x) \otimes V_{24}(m_{b}^{2},x) \\ & = & \Gamma_{NS}^{-}(m_{b}^{2},Q^{2},x) \otimes \Gamma_{NS}^{v}(Q_{0}^{2},m_{b}^{2},x) \otimes V(Q_{0}^{2},x) \\ \end{matrix}\end{split}\]
  • For a NLO evolution \(\Gamma_{NS}^{-} = \Gamma_{NS}^{v}\), therefore there would not be no need of introducing new evolution kernels. However, if we want to build a structure for the code which can be easily used for a NNLO evolution code we should define a \(\Gamma_{NS}^{- ,24}\) kernel as:

\[\Gamma_{NS}^{- ,24}(Q_{0}^{2},Q^{2},N) = \Gamma_{NS}^{-}(m_{b}^{2},Q^{2},N)\Gamma_{NS}^{v}(Q_{0}^{2},m_{b}^{2},N)\]
  • In the same way we can write explicitely the evolution of the \(V_{35}\) parton distribution function up to a scale \(Q^{2} > m_{t}^{2}\):

\[\begin{split}\begin{matrix} V_{35}(m_{t}^{2},x) & = & V(m_{t}^{2},x) = \Gamma_{NS}^{v}(Q_{0}^{2},m_{t}^{2},x) \otimes V(Q_{0}^{2},x) \\ T_{35}(Q^{2},x) & = & \Gamma_{NS}^{-}(m_{t}^{2},Q^{2},x) \otimes V(m_{t}^{2},x) \\ & = & \Gamma_{NS}^{-}(m_{t}^{2},Q^{2},x)\Gamma_{NS}^{v}(Q_{0}^{2},m_{t}^{2},x) \otimes V(Q_{0}^{2},x). \\ \end{matrix}\end{split}\]
  • Correspondingly, in our code we should define \(\Gamma_{NS}^{- ,35}\) as

\[\Gamma_{NS}^{- ,35}(Q_{0}^{2},Q^{2},N) = \Gamma_{NS}^{-}(m_{t}^{2},Q^{2},N)\Gamma_{NS}^{v}(m_{t}^{2},Q^{2},N)\]

N space solutions to the evolution equations (Ref. )

  • Singlet

  • We pointed out before that the splitting functions (and therefore the anomalous dimensions) depend on the scale only through the coupling constant. We can then choose \(a_{s}\) as evolution variable and rewrite the DGLAP evolution equation for the quark-singlet and gluon distributions, in Mellin-\(N\) space, as.

    \[a_s\frac{\partial}{\partial a_s} \binom{\Sigma}{g}(N, a_s) = -\mathbf{R} \cdot \binom{\Sigma}{g}(N, a_s),\]
  • where the matrix R has the following perturbative expansion

\[\mathbf{R} = \mathbf{R}_0+a_s\mathbf{R}_1+a_s\mathbf{R}_2 + \dots\]
  • with

\[\mathbf{R}_0 \equiv \frac{\boldsymbol{\gamma}^{(0)}}{\beta_0}\]
\[\mathbf{R}_k \equiv \frac{\boldsymbol{\gamma}^{(k)}}{\beta_0} - \sum_{i=1}^k \frac{\beta_i}{\beta_0}R_{k-i}\]
  • where the \(\mathbf{\gamma}\) stands for the matrix of anomalous dimensions.

    The solution of the singlet evolution equation at leading order is:

\[\mathbf{q}_{LO}(x,Q^2) = \mathbf{L}(a_s,a_0,N)\mathbf{q}_{LO}(x,Q_0^2).\]
  • The leading order evolution operator \(\mathbf{L}\) is written, in terms of the eigenvalues of the leading order anomalous dimension matrix

\[\lambda_{\pm} = \frac{1}{2\beta_{0}}\left\lbrack \gamma_{qq}^{0} + \gamma_{gg}^{0} \pm \sqrt{\left( \gamma_{qq}^{0} - \gamma_{gg}^{0} \right)^{2} + 4\gamma_{qg}^{0}\gamma_{gq}^{0}} \right\rbrack\]
  • and the corresponding projector matrices

\[\mathbf{e}_\pm=\frac{\pm 1}{\lambda_+ - \lambda_-}(R^{(0)}-\lambda_\mp\mathbb{I}),\]
  • in the following form

\[\mathbf{L}(a_s,a_0,N)= \mathbf{e}_-(\frac{a_s}{a_0})^{-\lambda_{-(N)}} + \mathbf{e}_+(\frac{a_s}{a_0})^{-\lambda_{+(N)}}.\]
  • We express the solution of the evolution equation [eq:stdevol] as a perturbative expansion around the LO solution \(\mathbf{L}(a_s,a_0,N)\)

\[\binom{\Sigma}{g}(N,a_s) = \bigg[\mathbb{I}+\sum_{k=1}^{\infty}a_s^kU_k(N)\bigg] \mathbf{L}(a_s,a_0,N)\bigg[\mathbb{I}+\sum_{k=1}^{\infty}a_0^kU_k(N)\bigg]^{-1}\binom{\Sigma}{g}(N,a_0)\equiv \mathbf{\Gamma}_S(N,a_s,a_0)\binom{\Sigma}{g}(N,a_0)\]
  • The fully truncated [1]_ expression of the matrix evolution kernel up to NNLO reads

\[\mathbf{\Gamma}_S(N) = \big[\mathbf{L} + a_s\mathbf{U}_1\mathbf{L} - a_0\mathbf{LU}_1 + a_s^2 \mathbf{U}_2\mathbf{L} - a_sa_0 \mathbf{U}_1\mathbf{LU}_1 + a_0^2\mathbf{L}(\mathbf{U}_1^2 - \mathbf{U}_2)\big].\]
  • The \(U\) matrices introduced in the previous equation are defined by this commutation relations

\[\big[ \mathbf{U}_1, \mathbf{R}_0 \big] = \mathbf{R}_1 + \mathbf{R}_1\]
\[\big[ \mathbf{R}_2, \mathbf{R}_0 \big] = \mathbf{R}_2 +\mathbf{R}_1 \mathbf{U}_1 + 2 \mathbf{U}_2\]
\[\vdots\]
\[\big[ \mathbf{U}_k, \mathbf{R}_0 \big] = \mathbf{R}_k + \sum_{i=1}^{k-1} \mathbf{R}_{k-i} \mathbf{U}_i + k \mathbf{U}_k \equiv\ \widetilde{\mathbf{R}}_k + k \mathbf{U}_k.\]
  • as

\[\mathbf{U}_k=-\frac{1}{k}[e_+\widetilde{\mathbf{R}}_ke_+ + e_-\widetilde{\mathbf{R}}_ke_-] + \frac{e_+ \widetilde{\mathbf{R}}_k e_-}{\lambda_- -\lambda_+ - k} + \frac{e_-\widetilde{\mathbf{R}}_ke_+}{\lambda_+ -\lambda_- - k}\]
  • where

\[\widetilde{\mathbf{R}}_k = \mathbf{R}_k+\sum_{i=1}^{k-1}\mathbf{R}_{k-i}\mathbf{U}_i.\]
\[\mathbf{R}_0 \equiv \frac{\boldsymbol{\gamma}^{(0)}}{\beta_0}\]
\[\mathbf{R}_k\equiv - b_1 \mathbf{R}_{k-1} + \mathcal{O}(\textrm{NNLO})\]
  • the NLO full solution (corresponding to IMODEV=1 in ref.) can be easily implemented into the code. Practically the sum in eq.[eq:ukexplicit] is stopped to a sufficiently high order such as k=20.

  • Non Singlet

  • Eq. ([U-eqn]) also holds for the scalar evolution of the non- singlet combinations of the quarks distributions, but with the obvious simplification that the right-hand sides vanish. This allows us to wrote down explicitly for $U_k^{,rm ns}$. At LO the solution simply reads as:

\[\Gamma_{NS,LO}^{\pm,v}(N,a_s,a_0)= (\frac{a_s}{a_0})^{-R_0^{ns}}\]
  • Both iterated and truncated non-singlet solutions can be written down in a compact closed form at NLO as well. Iterated solution:

\[\Gamma^{\pm,v}_{NS,NLO}(N,a_s,a_0) =\exp\bigg{\frac{U^{\pm,v}_1} {b_1}\ln(\frac{1+b_1a_s}{1+b_1 a_0})\bigg}(\frac{a_s}{a_0})^{-R_0^{ns}}.\]
  • Truncated solution:

$$label{ns-sol0} \Gamma^{pm,v}_{rm NS,NLO} (N,a_s,a_0): = \:left( 1 - U_1^{,pm,v} (a_s - a_0) \right) \left( \frac{a_s}{a_0} \right)^{-R_0^{:!rm ns}}.$$

Getting back the x-space PDF’s

The \(x\) space parton distributions are obtained by taking the inverse Mellin transforms of the solutions obtained in eq. ([eq:solutionexpand]) which, making use of the convolution theorem, can be written as

\[\begin{split}\begin{matrix} q_{NS}^{\pm ,v}(x,Q^{2}) & = & \int_{x}^{1}\frac{dy}{y}\Gamma_{qq}(y,a_{s},a_{0})\, q_{NS}^{\pm ,v}\left( \frac{x}{y},Q_{0}^{2} \right) \\ \begin{pmatrix} \Sigma \\ g \\ \end{pmatrix}(x,Q^{2}) & = & \int_{x}^{1}\frac{dy}{y}\Gamma_{S}(y,a_{s},a_{0})\begin{pmatrix} \Sigma \\ g \\ \end{pmatrix}\left( \frac{x}{y},Q_{0}^{2} \right) \\ \end{matrix}\end{split}\]

The evolution kernels \(\Gamma(x)\) are defined as the inverse Mellin transforms of the evolution factors introduced in eqs. ([eq:solutionexpand])

\[\Gamma_{S}(x,a_{s},a_{0}) = \int_{c - i\infty}^{c_{+}i\infty}\frac{dN}{2\pi i}x^{- N}\Gamma_{S}(N,a_{s},a_{0})\]

Note however that all splitting functions, except the off-diagonal entries of the singlet matrix, diverge when \(x = 1\), this implies that the evolution kernels \(\Gamma(x)\) will likewise be divergent in \(x = 1\).

We now show that, like the splitting functions, the evolution factors can be defined as distributions. To this purpose consider the generic evolution factor \(\Gamma\) such that (omitting the explicit dependence of \(\Gamma\) on the coupling \(a_{s}\))

\[f(x,Q^{2}) = \int_{x}^{1}\frac{dy}{y}\Gamma(y)f\left( \frac{x}{y},Q_{0}^{2} \right)\,.\]

Defining the distribution

\[\Gamma_{+}(x) = \Gamma(x) - \gamma\delta(1 - x)\,,\text{\quad\quad}where\quad\gamma = \int_{0}^{1}dx\Gamma(x)\,.\]

Equation ([eq:gengamma]) can then be rewritten as

\[\begin{split}\begin{matrix} f(x,Q^{2}) & = \gamma f(x,Q_{0}^{2}) + \int_{x}^{1}\frac{dy}{y}\Gamma_{+}(y)f\left( \frac{x}{y},Q_{0}^{2} \right) \\ & = \gamma f(x,Q_{0}^{2}) + \int_{x}^{1}\frac{dy}{y}\Gamma(y)\left\lbrack f\left( \frac{x}{y},Q_{0}^{2} \right) - yf\left( x,Q_{0}^{2} \right) \right\rbrack - f(x,Q_{0}^{2})\int_{0}^{x}dy\Gamma(y)\,. \\ \end{matrix}\end{split}\]

Due to the subtraction eq. [eq:gammadist], all integrals on the r.h.s of eq. [eq:genexp] converge and can be evaluated numerically. We can then use this expression to compute the parton distribution functions in \(x\) space, determining \(\Gamma\) numerically from eq.[eq:xkernels] and \(\gamma\) as

\[\gamma = \int_{0}^{1}dx\int_{c - i\infty}^{c + i\infty}\frac{dN}{2\pi i}x^{- N}\Gamma(N) = \int_{c - i\infty}^{c + i\infty}\frac{dN}{2\pi i}\frac{\Gamma(N)}{1 - N}\,.\]

In this singlet case, however this prescription has been slightly modified because \(\Gamma(N)|_{N = 1}\) is indeed infinite. So eq.[eq:genexp] is rewritten in another equivalent form. Let us define

\[f^{(1)}(x,Q^{2}) = x\, f(x,Q^{2})\text{\quad\quad}\Gamma^{(1)}(x,Q_{0}^{2},Q^{2}) = x\Gamma(x,Q_{0}^{2},Q^{2}).\]

Thus

\[\begin{split}\begin{matrix} f^{(1)}(x,Q^{2}) & = & x\, f(x,Q^{2}) = \int_{x}^{1}\,\frac{dy}{y}\,\Gamma(y,Q_{0}^{2},Q^{2})\, x\, f\left( \frac{x}{y},Q_{0}^{2} \right) \\ & = & \int_{x}^{1}\,\frac{dy}{y}\,\Gamma^{(1)}(y,Q_{0}^{2},Q^{2})\, f^{(1)}\left( \frac{x}{y},Q_{0}^{2} \right) \\ & = & \int_{x}^{1}\,\frac{dy}{y}\,\Gamma^{(1)}(y,Q_{0}^{2},Q^{2})\,\left( f^{(1)}\left( \frac{x}{y},Q_{0}^{2} \right) - yf^{(1)}(x,Q_{0}^{2}) \right) \\ & + & \int_{x}^{1}\,\frac{dy}{y}\, y\Gamma^{(1)}(y,Q_{0}^{2},Q^{2})\, f^{(1)}(x,Q_{0}^{2}) \\ & = & \int_{x}^{1}\,\frac{dy}{y}\,\Gamma^{(1)}(y,Q_{0}^{2},Q^{2})\,\left( f^{(1)}\left( \frac{x}{y},Q_{0}^{2} \right) - yf^{(1)}(x,Q_{0}^{2}) \right) \\ & + & f^{(1)}(x,Q_{0}^{2})\left\lbrack \int_{0}^{1}\, dy\, y\Gamma(y,Q_{0}^{2},Q^{2}) - \int_{0}^{x}\, y\Gamma(y) \right\rbrack \\ \Rightarrow f(x,Q^{2}) & = & \int_{x}^{1}\,\frac{dy}{y}\, y\Gamma(y,Q_{0}^{2},Q^{2})\,\left( \frac{1}{y}f\left( \frac{x}{y},Q_{0}^{2} \right) - yf(x,Q_{0}^{2}) \right) \\ & + & f(x,Q_{0}^{2})\left\lbrack \Gamma(N,Q_{0}^{2},Q^{2})|_{N = 2} - \int_{0}^{x}\, y\Gamma(y,Q_{0}^{2},Q^{2}) \right\rbrack \\ \end{matrix}\end{split}\]

Target Mass Corrections

From Eq. (4.19) of Ref. , if we identify \(F\) with \(F_{2}(y)/y^{2}\) by comparing left and right hand sides of the equation in the limit of zero target mass, we obtain the expression of the NLT correction to the structure function \(F_{2}:\)

\[F_{2}^{NLT}(x,Q^{2}) = \frac{x^{2}}{\tau^{3/2}}\frac{F_{2}^{LT}(\xi,Q^{2})}{\xi^{2}} + 6\frac{M^{2}}{Q^{2}}\frac{x^{3}}{\tau^{2}}I_{2}(\xi,Q^{2})\]

where

\[\begin{split}\begin{matrix} I_{2}(\xi,Q^{2}) & = \int_{\xi}^{1}\, dz\,\frac{F_{2}^{LT}(z,Q^{2})}{z^{2}}. \\ \tau & = 1\, + \,\frac{4M_{p}^{2}x^{2}}{Q^{2}} \\ \xi & = \,\frac{2x}{1 + \sqrt{\tau}} \\ \end{matrix}\end{split}\]

Now let us Mellin transform and antitransform \(F_{2}^{LT}(\xi,Q^{2})\) and \(I_{2}(\xi,Q^{2})\) with respect to the variable \(\xi\):

\[F_{2}^{LT}(\xi,Q^{2}) = \int\frac{dN}{2\pi i}\,\xi^{- N}\Gamma(N,Q_{0}^{2},Q^{2})\, f\left( N,Q_{0}^{2} \right)\]

while

\[\begin{split}\begin{matrix} I_{2}(N,Q^{2}) & = \int_{0}^{1}d\xi\,\xi^{N - 1}\int_{\xi}^{1}\, dz\,\frac{F_{2}^{LT}(z,Q^{2})}{z^{2}} \\ & = |\frac{\xi^{N}}{N}\,\int_{\xi}^{1}\, dz\,\frac{F_{2}^{LT}(z,Q^{2})}{z^{2}}|_{0}^{1} + \int_{0}^{1}\frac{d\xi}{N}\,\xi^{N}\,\frac{F_{2}^{LT}(\xi,Q^{2})}{\xi^{2}} \\ & = \frac{1}{N}\,\int_{0}^{1}\, d\xi\,\xi^{N - 2}F_{2}^{LT}(\xi,Q^{2}) \\ & = \frac{F_{2}^{LT}(N - 1,Q^{2})}{N} \\ \Rightarrow I_{2}^{LT}(\xi,Q^{2}) & = \int\frac{dN}{2\pi i}\,\xi^{- N}\,\frac{F_{2}^{LT}(N - 1,Q^{2})}{N} \\ & = \frac{1}{\xi}\,\int\frac{dN}{2\pi i}\,\xi^{- N}\,\frac{F_{2}^{LT}(N,Q^{2})}{N + 1}. \\ \end{matrix}\end{split}\]

Now, by substituting equations [eq:fslt] and [eq:i2N] into [eq:tmcformula] we obtain

\[\begin{split}\begin{matrix} F_{2}^{NLT}(\xi,Q^{2}) & = & \,\int\frac{dN}{2\pi i}\,\xi^{- N}\,\left( \frac{x^{2}}{\tau^{3/2}\xi^{2}} + \frac{6M^{2}}{Q^{2}}\frac{x^{3}}{\tau^{2}}\frac{1}{\xi(N + 1)} \right) \\ & & C_{2}(N,\alpha_{s}(Q^{2}))\Gamma(N,Q_{0}^{2},Q^{2})\, q\left( N,Q_{0}^{2} \right). \\ \end{matrix}\end{split}\]

Now we can reinterpret the factor in front of \(C_{2}(N,\alpha_{s}(Q^{2}))\) as the new Target Mass Corrected coefficient function, which can be written as a function of \(\tau\):

\[C_{2}^{TMC}(N,\alpha_{s}(Q^{2})) = \frac{(1 + \sqrt{\tau})^{2}}{4\tau^{3/2}}\left( 1 + \frac{3\left( 1 - 1/\sqrt{\tau} \right)}{N + 1} \right)C_{2}(N,\alpha_{s}(Q^{2})).\]

Notice that into the limit \(M_{p}/Q \rightarrow 0,\,\tau \rightarrow 1\), \(C_{2}^{TMC}(N,\alpha_{s}(Q^{2}))\) becomes \(C_{2}(N,\alpha_{s}(Q^{2}))\).

The same procedure can be applied to find the NLT target mass corrections to the \(F_{L}\) and \(F_{3}\) structure functions.

Starting from formula (4.21b) of Ref. , being

\[\frac{\nu W_{2}}{M} = F_{2}\text{\quad\quad}W_{1} = F_{1}\text{\quad\quad}F_{L} = \frac{\nu W_{2}}{M} - 2xW_{1} = 2xW_{L} - \frac{4x^{2}M^{2}}{Q^{2}}\frac{\nu W_{2}}{M},\]

we find

\[F_{L}^{NLT}(x,Q^{2}) = F_{L}^{LT}(x,Q^{2}) + \frac{x^{2}(1 - \tau)}{\tau^{3/2}}\frac{F_{2}^{LT}(\xi,Q^{2})}{\xi^{2}} + \frac{M^{2}}{Q^{2}}\frac{x^{3}(6 - 2\tau)}{\tau^{2}}I_{2}(\xi,Q^{2})\]

where \(I_{2}\) is defined in Eq. [eq:i2]. With the same calculations as in the \(F_{2}\) case we obtain the following formula

\[\begin{split}\begin{matrix} F_{L}^{NLT}(\xi,Q^{2}) & = & F_{L}^{LT}(x,Q^{2}) + \,\int\frac{dN}{2\pi i}\,\xi^{- N}\,(\frac{x^{2}(1 - \tau)}{\tau^{3/2}\xi^{2}} + \frac{M^{2}}{Q^{2}}\frac{x^{3}}{\tau^{2}}\frac{(6 - 2\tau)}{\xi(N + 1)}) \\ & & C_{2}(N,\alpha_{s}(Q^{2}))\,\Gamma(N,Q_{0}^{2},Q^{2})\, f\left( N,Q_{0}^{2} \right). \\ \end{matrix}\end{split}\]

Now we can reinterpret the factor in front of \(C_{2}(N,\alpha_{s}(Q^{2}))\) as the new Target Mass Corrected Evolution coefficient, which by re-expressing everything as a function of \(\tau\) can be written as:

\[\begin{split}\begin{matrix} C_{L}^{TMC}(N,\alpha_{s}(Q^{2})) & = & \lbrack 1 + \frac{(1 + \sqrt{\tau})^{2}(1 - \tau)}{4\tau^{3/2}} \cdot \\ & & \left( 1 - \frac{(3 - \tau)(1 + \sqrt{\tau})}{4\tau^{2}}\frac{1}{N + 1} \right)\frac{C_{2}(N,\alpha_{s}(Q^{2}))}{C_{L}(N,\alpha_{s}(Q^{2}))}\rbrack C_{L}(N,\alpha_{s}(Q^{2})). \\ \end{matrix}\end{split}\]

Finally to find the TMC of \(F_{3}\) we start from Eq. (4.22) of Ref. , where \(F = 2F_{3}(y)/y\) as we can see by comparing the left and right hand side members of the equation in the limit of \(M \rightarrow 0\):

\[F_{L}^{NLT}(x,Q^{2}) = \frac{x}{\tau}\frac{F_{3}^{LT}(\xi,Q^{2})}{\xi} + \frac{2M^{2}}{Q^{2}}\frac{x^{2}}{\tau^{3/2}}I_{3}(\xi,Q^{2})\]

where

\[I_{3}(\xi,Q^{2}) = \int_{\xi}^{1}\, dz\,\frac{2F_{3}^{LT}(z,Q^{2})}{z}.\]

With the same calculations as in the \(F_{2}\) case and by noticing that

\[\begin{split}\begin{matrix} I_{3}(N,Q^{2}) & = \int_{0}^{1}d\xi\,\xi^{N - 1}\int_{\xi}^{1}\, dz\,\frac{2F_{3}^{LT}(z,Q^{2})}{z} \\ & = |\frac{\xi^{N}}{N}\,\int_{\xi}^{1}\, dz\,\frac{2F_{3}^{LT}(z,Q^{2})}{z}|_{0}^{1} + \int_{0}^{1}\frac{d\xi}{N}\,\xi^{N}\,\frac{2F_{3}^{LT}(\xi,Q^{2})}{\xi} \\ & = \frac{2}{N}\,\int_{0}^{1}\, d\xi\,\xi^{N - 1}F_{3}^{LT}(\xi,Q^{2}) \\ & = \frac{2F_{3}^{LT}(N,Q^{2})}{N}, \\ \end{matrix}\end{split}\]

we obtain the following formula

\[\begin{split}\begin{matrix} F_{3}^{NLT}(\xi,Q^{2}) & = & \,\int\frac{dN}{2\pi i}\,\xi^{- N}\,(\frac{x}{\tau\xi} + \, 4\frac{M^{2}}{Q^{2}}\frac{x^{2}}{\tau^{3/2}}\frac{1}{N}) \\ & & C_{3}(N,\alpha_{s}(Q^{2}))\,\Gamma(N,Q_{0}^{2},Q^{2})\, f\left( N,Q_{0}^{2} \right). \\ \end{matrix}\end{split}\]

The factor in front of \(C_{3}(N,\alpha_{s}(Q^{2}))\) can be interpreted as the NLT Target Mass corrected coefficient function, which can be written as a function of \(\tau\):

\[\begin{split}\begin{matrix} C_{3}^{TMC}(N,\alpha_{s}(Q^{2})) & = & \frac{1 + \sqrt{\tau}}{2\tau}\left( 1\, + \, 2\,\left( 1 - \frac{1}{\sqrt{\tau}} \right)\frac{1}{N} \right)C_{3}(N,\alpha_{s}(Q^{2})). \\ \end{matrix}\end{split}\]