

 	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools	Code development	Code contributions
	Example pull request
	Reviewing pull requests	Guidelines for reviewing

	Adding to the Documentation
	Git, GitHub and GitLab
	Tools for developing with the Python programming language

	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Contributing guidelines and tools
	Code development
	
 View page source

Code development

Code development is carried out using Github.
For more information on the Git workflow that NNPDF adopts, see the Git and GitHub section.

Code contributions

Code contributions should be presented in the form of Pull
Requests(PRs) to the repository.
Avoid committing modifications directly to the master version of the code. Instead,
create a new branch and make modifications on it.

This PR should adhere to the following rules:

	A clear explanation of the aims of the PR should be given, i.e. what issue(s) are you trying to
address? If the reason for the PR has already been detailed in an issue, then this issue should be
linked in the PR.

	The PR should contain documentation describing
the new features, if applicable.

	If the PR is fixing a bug, information should be given such that a reviewer can reproduce the bug.

	The PR should have at least one developer assigned to it, whose task it is to review the
code. The PR cannot be merged into master before the reviewer has approved it.

	Before a PR can be merged into master, the Travis build for it must pass (see here).
Practically, this means that you should find a green tick next to your PR on the relevant PR
page. If you instead find a red cross next to your PR, the
reason for the failure must be investigated and dealt with appropriately.

	When writing examples, please use the recommended resources detailed
here.

Example pull request

You may find it instructive to go though this pull request that
implements new convolution methods:

https://github.com/NNPDF/nnpdf/pull/708/

It demonstrates how to add a new feature, together with relevant tests and
documentation, and refine it based on the discussion.

Reviewing pull requests

All changes to the code should be reviewed by at least one person (and ideally
at least two). The expected benefits of the policy are:

	It should improve the overall quality of the code.

	It should provide the author of the change with a reasonably quick feedback
loop to discuss the technical details involved in the changes.

	It should make at least two people (the author and the reviewer) familiar
with the changes. It should also ensure that the changes are easy to read
and maintain in the future, and conform to the structure of the rest of the
project.

Guidelines for reviewing

The following approach has been found helpful for reviewers, when reviewing pull
requests:

	Make sure you actually understand what the changes are about. Unclear
details should not pass code review. Ask for clarifications, documentation,
and changes in the code that make it more clear. If you are not in the
position of taking the time, consider asking somebody else to help reviewing
the changes. If the changes are big and difficult to comprehend at once,
consider requesting that the author breaks them down in easier to
understand, self contained, pull requests. Note that it is for the authors
to proactively discuss the proposed changes before they become too difficult
for anyone else to follow, and, failing that, it is fair to ask them to go
through the work of making them intelligible.

	Look at the big picture first. Think about whether the overall idea and
implementation is sound or instead could benefit from going in a different
direction. Ideally before a lot of work has gone into fine tuning details.

	Review the code in detail. Try to identify areas where the changes
could be clearly improved in terms of clarity, speed or style. Consider
implementing minor changes yourself, although note that there are
trade-offs: People are more likely to assimilate good patterns if they
implement them a few times, which may be a win long term, even if it takes
longer to ship this particular code change.

	Ideally changes should come with automatic tests supporting their
correctness.

	Use automated tools which could catch a few extra
problems. In particular

	Do look at the automated tests that run with the PR.
New code should not break them.

	Use pylint with our default
configuration to
catch common problems with Python code.

	New Python code should come formatted with
black tool with our default
configuration

	The imports in Python code should be sorted using the
isort tool with our default
configuration

	Changes in compiled code should be tested in debug mode, with
the address sanitizer enabled. This is done with the
-DCMAKE_BUILD_TYPE=Debug -DENABLE_ASAN=ON options in cmake.

Some commits corresponding to major cosmetic changes have been collected in
.git-blame-ignore-revs. It is possible to configure the local git to ignore these commits when
running git blame:

git config blame.ignoreRevsFile .git-blame-ignore-revs

	Regardless of automated tests, always run code with the new changes
manually. This gives great insight into possible pitfalls and areas of
improvement.

	Make sure the changes are appropriately documented: Interface functions
should come with rich docstrings, ideally with examples, larger pieces of
functionality should come with some prose explaining what they are for.

	Consider the effects on the larger system: Did this change make some example
or piece of documentation obsolete and therefore mean needs to be updated?
Did it break compatibility with something that we rely on? Should an email
be sent around announcing the change? Does the change solve or unblock some
outstanding issues?

 Previous
 Next

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

