

 	Getting started
	Fitting code: n3fit
	Code for data: validphys	Introduction to validphys 2
	Some things that validphys does
	Using validphys	Getting started with validphys
	Downloading resources
	Uploading results to the validphys repository
	The nnprofile.yaml file
	Writing validphys runcards
	Specifying data cuts
	Comparing data and theory
	Generating reports
	Validphys scripts
	Using the validphys API
	Developing validphys
	Producing tables and figures
	Customizing validphys plots and other functionality	Tweaking Matplotlib styles
	Consider adding the functionality to master
	Hooking validphys to external code
	Editing SVG files

	Examples

	How validphys handles data
	More detailed functionality

	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Code for data: validphys
	Customizing validphys plots and other functionality
	
 View page source

Customizing validphys plots and other functionality

validphys comes with extensive capabilities for producing publication
ready figures and other results. See for example How to plot PDFs, distances and luminosities or
How to do a data theory comparison. Here we discuss what to do when these are not quite enough
for a given application, for example when adding extremely specific plots or
producing the final touches for plots for a publication or talk.

Tweaking Matplotlib styles

Some aspects of the appearance of the figure can be customized using
Matplotlib
stylesheets.
The default styles we use can be found in the validphys.mplstyles
module. A different style file can be passed using the --style flag of
validphys (and other applications derived from reportengine). Note
that the styles don’t compose and therefore it is advised to copy the default
stylesheet and modify it as needed.

Note that several options haven’t been chosen at random. For example the first
few entries in the color cycle are colorblind friendly and such that colors
look OK when stacked with transparency on top of each other, for example for
PDF plots.

Consider adding the functionality to master

New types of plots, as well as stylistic or functional enhancements to existing
code can be added to validphys, following the appropriate
process.

This option is strongly recommended and should be the default choice in most
situations. While it requires some initial investment, in coming up with an
appropriate The design of validphys 2 to make the required feature fit the rest of the
system, as well meeting somewhat high coding standards, there
are important benefits in exchange: The feature will get a few additional
eyeballs and once merged it will be maintained and kept in sync with the rest
of the code, making runcards using it much more likely to work in the future.
That others can benefit from the work is of course also a good thing.

Hooking validphys to external code

In some situations the requirements for a given plot are rather esoteric and
there is no way to add the functionality to the code economically. In
such cases, external code can be used. Even so, consider upstreaming as much
of the functionality as possible, to get the benefits discussed above.

There are two ways to take advantage of resources produced using the
validphys execution model to process them further.

	Using the API: It is possible to get some data from validphys using
the validphys API and then use it in a script. This affords
maximum flexibility, as the script can do anything. In exchange runcard
based input processing or structured output folders aren’t readily
available. Prefer this option for a very small project or when the task
doesn’t fit the execution model of validphys for some reason.

	Using extra modules: Additional Python modules or files can be passed to
validphys using the --extra-modules (or -x) flag. The
functions in these modules then act validphys providers and can take
resources from validpys as input. This approach allows the
immediate use of runcards or the default styles. One limitation is that
there is currently no way of adding production rules or parsers in this
way. Prefer this for actions that are too difficult to upstream to
validphys, but should work as if they were internal. A minimal example
for an external module could be:

extra_plots.py

from matplotlib.figure import Figure
from reportengine.figure import figure

from validphys.commondataparser import load_commondata

A simple plot that probably should be in validphys to begin with.

@figure
def plot_central_values(commondata):
 fig = Figure()
 ax = fig.subplots()
 ax.plot(load_commondata(commondata).central_values)
 return fig

The action plot_central_values can now be used in a runcard:

runcard.py
dataset_input:
 dataset: NMC

actions_:
 - plot_central_values

Provided that validphys is invoked as validphys runcard.yaml -x extra_plots.py.

Note that both of these come at the cost of risking future breakage
somewhat as we don’t guarantee any sort of stability on the internal
interfaces.

Editing SVG files

SVG files store information on figures as sprites and text rather than pixels.
These can then be edited with image editors such as Inkscape. It is possible to edit the text in the figure or
change colors of individual lines. Note that this is the least maintainable
approach as the modifications need to be applied manually every time the plot
is updated. However it may be a good way to quickly enhance a plot for a
presentation for example. To produce SVG files, pass the flag --formats
svg when invoking validphys.

 Previous
 Next

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

