

 	Getting started
	Fitting code: n3fit
	Code for data: validphys	Introduction to validphys 2
	Some things that validphys does
	Using validphys	Getting started with validphys
	Downloading resources
	Uploading results to the validphys repository
	The nnprofile.yaml file
	Writing validphys runcards
	Specifying data cuts
	Comparing data and theory
	Generating reports	The report action
	Example report template
	Customizing how things look in the report

	Validphys scripts
	Using the validphys API
	Developing validphys
	Producing tables and figures
	Customizing validphys plots and other functionality
	Examples

	How validphys handles data
	More detailed functionality

	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Code for data: validphys
	Generating reports
	
 View page source

Generating reports

This section explains how to generate reports. These are collections of
plots, tables or other validphys outputs which can be uploaded to the
vp server.

	Reports are implemented as an action of reportengine.

	The report action takes a template
argument, corresponding to the filename of a template in the
Pandoc Markdown format, with
the actions defined with a special syntax discussed below.

	The actions will be resolved as if they were directly specified in the
configuration file and when all of them are completed, their value
will be substituted in the template (the jinja2 library is used for
the intermediate rendering).

reportengine will interpret strings between {@ and @} inside the
templates. There are currently target and with/endwith
tags:

1. Target tags
specify an action to be executed. The possible syntax is:

{@[spec] action_name[(arg1=value, arg2=value)]@}

where [] stands for optional syntax. A few conforming examples are:

{@ plot_fancy @}

{@theory::pdfs plot_fancy@}

{@plot_fancy(normalize_to=data)@}

The different parts of the specification,
namely mappings, lists of mappings (or special tags implementing that
behaviour) are separated with the :: operator (resembling the C++
scope resolution operator). Actions will be repeated if the
specification results in multiple namespaces (e.g. one plot per pdf in
the second example above).

2. With/endwith tags
repeat the content between the tags for each namespace in the
specifications. Targets inside the block are repeated and searched for
within each namespace. The syntax of the with tag is:

{@with spec@}

and it must be closed by an endwith tag

{@endwith@}

Like in the target tag, the spec is separated by ::.

The report action

As always, see validphys –help report for the most complete
information. The options allow customizing the CSS style or the
template that contains the report itself.

Here we only discuss a couple of interesting flags.

	The main flag

The main: True flag can only affect one report per run. It has the
effect of setting the name index.html, which comes in handy for
visualizing the uploaded result in the server.

The main flag also tries to open the web browser when the report finishes. The
browser will be chosen according to internal heuristics, by querying system
preferences. These can be overridden by setting the BROWSER environment
variable. For example, in text-only environments such as remote clusters, it may
be preferable to just print the URL. This can be achieved by setting the
environment variable to echo (for example in the .bashrc file):

export BROWSER=echo

	Displaying math (the mathjax flag)

Displaying math on browsers is painful and not without trouble. Pandoc
tries to render the LaTeX math using utf8-characters. This does not
require external dependencies and allows one to work with the text
normally, but is extremely limited (little more than subindexes and
greek letters).

It is possible to set mathjax: True to use the
Mathjax library. This supports many more
symbols, but is rather slow and requires an external connection in
order to render the math.

Example report template

A template that could correspond to the example above is:

NNPDF Report
============

{@ description @}

PDF plots

{@ plot_pdfs @}

Normalized

{@normalize plot_pdfs @}

Train-valid split

{@ plot_training_validation @}

χ^2

{@ with pdfs @}

{@ pdf @}

{@ experiments_chi2_table @}

{@ endwith@}

Experiment plots

{@ with pdfs @}
###Experiment results for {@pdf@}
{@with datanorm::experiments@}

{@experiment@}
{@experiment plot_fancy @}
{@ endwith @}
{@ endwith @}

First we are writing a verbatim Markdown title. Next we are asking for
a variable named “description” to be computed and later substituted
right below (it is obtained from the fit config file, as seen in the
template). Then we are computing absolute and normalized PDF plots
(normalize is an arbitrary string that is defined in the config file
to normalize to the first PDF). We then plot the training and
validation \(\chi^2\) of each replica in the fit. Next we compute the
\(\chi^2\) for each experiment, and produce a separate table and heading
for each PDF in pdfs (note that LaTeX math syntax is allowed).
Finally we produce, for each pdf and for each experiment, a set of
data-theory comparison plots (which in turn are repeated for each
dataset in the experiment).

Customizing how things look in the report

By default, the str() method will be applied to objects that appear
in the report. If you want a custom behaviour, declare
a custom as_markdown property for your objects. It should return
a string in Pandoc Markdown describing your object. Raw HTML is
also allowed (although that decreases the compatibility, e.g. if we
decide to output LaTeX instead of HTML in the future).

 Previous
 Next

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

