

 	Getting started
	Fitting code: n3fit
	Code for data: validphys	Introduction to validphys 2
	Some things that validphys does
	Using validphys	Getting started with validphys
	Downloading resources
	Uploading results to the validphys repository
	The nnprofile.yaml file
	Writing validphys runcards	Multiple inputs and namespaces
	Nesting namespaces
	Action arguments
	The from_ special key
	from_: Null
	The namespaces_ special key
	Plotting labels

	Specifying data cuts
	Comparing data and theory
	Generating reports
	Validphys scripts
	Using the validphys API
	Developing validphys
	Producing tables and figures
	Customizing validphys plots and other functionality
	Examples

	How validphys handles data
	More detailed functionality

	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Code for data: validphys
	Writing validphys runcards
	
 View page source

Writing validphys runcards

In this section we go into some more detail on how to write validphys
runcards, in particular for more complex cases.

Note

Examples details the example runcards that can be found in
this folder.
The Tutorials section also takes you through how to make runcards for
various tasks.

We start with the following simple example:

pdf: NNPDF40_nnlo_as_01180

theoryid: 208

use_cuts: "internal"

dataset_input:
 dataset: ATLASWZRAP36PB
 cfac: [EWK]

actions_:
 - plot_fancy
 - plot_chi2dist

Multiple inputs and namespaces

Resources can be declared:

	At top level, like in the simple runcard above;

	Inside a mapping (with an arbitrary key);

	Inside an element of a list of mappings.

These mappings are called namespaces. For detailed information see Namespaces.

Important

When choosing your arbitrary key, good practice is to use a capital letter at the start.
This helps to differentiate user-defined namespaces from internal objects.

	Arbitrary namespaces

In this case we can modify the example as follows:

pdf: NNPDF40_nnlo_as_01180

theoryid: 208

fit: NNPDF40_nlo_as_01180

With_cuts:
 use_cuts: "fromfit"

Without_cuts:
 use_cuts: "nocuts"

dataset_input:
 dataset: ATLASWZRAP36PB
 cfac: [EWK]

actions_:
 - With_cuts plot_fancy
 - Without_cuts plot_chi2dist

Here With_cuts and Without_cuts are arbitrary strings that
specify namespaces.
We are asking for

	plot_fancy to be executed taking into account the cuts (note that we also need to
specify the fit where they are read from)

	plot_chi2dist to be executed without the cuts.

Similar to
a programming language like C, the inner namespace has priority with
respect to the outer. For example, if we add a PDF specification to the
with_cuts namespace like this:

pdf: NNPDF40_nnlo_as_01180

theoryid: 208

fit: NNPDF40_nlo_as_01180

With_cuts:
 use_cuts: "fromfit"
 pdf: NNPDF40_example_closure_test

Without_cuts:
 use_cuts: "nocuts"

dataset_input:
 dataset: ATLASWZRAP36PB
 cfac: [EWK]

actions_:
 - With_cuts plot_fancy
 - Without_cuts plot_chi2dist

The plot_fancy action will ignore the outer pdf
(NNPDF40_nnlo_as_01180) and use the one defined in the innermost
namespace (NNPDF40_example_closure_test). Because we have not specified plot_chi2dist to
be executed within the With_cuts namespace, it will continue to use
NNPDF40_nlo_as_01180.

	Lists of namespaces

We can also have lists of mappings acting as namespaces. The action
will then be repeated inside each of the namespaces generating one
result for each. For example:

pdf: NNPDF40_nlo_as_01180

theoryid: 208

fit: NNPDF40_example_closure_test

Specifications:
- use_cuts: "fromfit"
 pdf: NNPDF40_nnlo_as_01180

- use_cuts: "nocuts"

dataset_input:
 dataset: ATLASWZRAP36PB
 cfac: [EWK]

actions_:
 - Specifications plot_fancy

Now a different plot_fancy action will be executed for each of the
two mappings of the list “Specifications”: one will use the NNLO PDF
and use the cuts from NNPDF40_example_closure_test, and the other will plot all points
in the dataset.

Some keys are appropriately interpreted either as lists of objects or
list or namespaces depending on the context. They are documented in
validphys –help config. For example, the pdfs key is entered as
a list of LHAPDF ids:

pdfs:
 - NNPDF40_nlo_as_01180
 - NNPDF40_nnlo_as_01180

Because the plot_fancy action takes a list of pdfs as input,
something like this:

pdfs:
 - NNPDF40_nlo_as_01180
 - NNPDF40_nnlo_as_01180

theoryid: 208

use_cuts: "nocuts"

dataset_input:
 dataset: ATLASWZRAP36PB
 cfac: [EWK]

actions_:
 - plot_fancy

will produce plots where the two PDFs appear together. However,
we can also produce individual plots for each PDF, by simply
specifying that we want to loop over pdfs:

pdfs:
 - NNPDF40_nlo_as_01180
 - NNPDF40_nnlo_as_01180

theoryid: 208

use_cuts: "nocuts"

dataset_input:
 dataset: ATLASWZRAP36PB
 cfac: [EWK]

actions_:
 - pdfs plot_fancy

In this case the value of the pdfs key is seen as equivalent to:

pdfs:
 - {pdf: NNPDF40_nlo_as_01180}
 - {pdf: NNPDF40_nnlo_as_01180}

However, the special treatment allows us to simplify both the input
file and the programmatic interface of the functions.

Nesting namespaces

Namespace specifications like those described above can be arbitrarily
nested. Values will be searched from the inner to the outer namespace. When
the namespace specifications represent lists of mappings, all possible
combinations will be produced.

Consider the example:

pdfs:
 - NNPDF40_nlo_as_01180
 - NNPDF40_nnlo_as_01180
 - NNPDF40_nnlo_as_01180_hessian

fit: NNPDF40_nlo_as_01180

theoryids:
 - 208
 - 162

With_cuts:
 use_cuts : "nocuts"

dataset_inputs:
 - { dataset: LHCBWZMU7TEV, cfac: [NRM] }
 - { dataset: LHCBWZMU8TEV, cfac: [NRM] }
 - { dataset: ATLASWZRAP36PB }

actions_:
 - With_cuts::theoryids::pdfs::dataset_inputs plot_fancy

This will first enter the “With_cuts” namespace (thus setting
use_cuts = "nocuts" for the action), and then loop over all the
theories, pdfs and datasets.

The order over which the looping is done is significant:

	The outer specifications must set all the variables required for the inner
ones to be fully resolved (so With_cuts must go before dataset_inputs).

	The caching mechanism works by grouping together the namespace
specifications from the beginning. For example, suppose we were to
add another action to the example above:

- with_cuts:
 theoryids:
 pdfs:
 dataset_inputs:
 - plot_chi2dist

both of these require the same convolutions to be computed. Validphys will
realize this as long as both actions are iterated in the same way.
However, permuting pdfs and theoryids would result in the
convolutions computed twice, since the code cannot prove that they
would be identical.

	In summary:
		Always loop from more general to more specific.

	Always loop in the same way.

Action arguments

Action arguments are syntactic sugar for specifying arguments visible
to a single action. They are subject to being verified by the action-defined
checks. For example, in the PDF plotting example above:

pdfs:
 - NNPDF40_nlo_as_01180
 - NNPDF40_nnlo_as_01180
 - NNPDF40_nnlo_as_01180_hessian

First:
 Q: 1
 flavours: [up, down, gluon]

Second:
 Q: 100
 xgrid: linear

actions_:
 - First::plot_pdfreplicas (normalize_to=NNPDF40_nlo_as_01180)
 - First plot_pdfs
 - Second plot_pdfreplicas

The normalize_to key only affects the plot_pdfreplicas action.
Note that defining it inside the first mapping would have had the
same effect in this case.

The from_ special key

The from_ special key specifies that the value of a resource is to be taken from
a container. This is useful for working with fits (but not limited to
that). For example:

fit: NNPDF40_nlo_as_01180

use_cuts: "nocuts"

description:
 from_: fit

theory:
 from_: fit

theoryid:
 from_: theory

Q: 10

template: report.md

normalize:
 normalize_to: 1

datanorm:
 normalize_to: data

pdfs:
 - from_: fit
 - NNPDF40_nnlo_as_01180

data_inputs:
 from_: fit

actions_:
 - report(out_filename=index.md)

Here the from_ key is used multiple times:

	To obtain the description string from the report input card.

	To obtain the theory mapping from the fit input card.

	To obtain the theoryid key from the theory mapping.

	To obtain a single PDF produced in the fit (as an element of the
list/namespaces of pdfs). Note that the keyword is also allowed
inside nested elements.

	To obtain a set of all the experiments of the fit.

The from_ key respects lazy processing, and therefore something like
this will do what you expect:

fits:
 - NNPDF40_nlo_as_01180
 - NNPDF40_nnlo_lowprecision

use_cuts: "nocuts"

theory:
 from_: fit

theoryid:
 from_: theory

Q: 10

description:
 from_: fit

template: report.md

normalize:
 normalize_to: 1

datanorm:
 normalize_to: data

pdfs:
 - from_: fit
 - NNPDF40_nnlo_as_01180_hessian

dataset_inputs:
 from_: fit

actions_:
 - fits report

This will work exactly as the example above, except that a new action
(with its corresponding different set of resources) will be generated
for each of the two fits.

For fits, there is a shortcut to set dataset_inputs, pdf and
theoryid to the values obtained from the fit. This can be done with
the fitcontext rule. The above example can be simplified like this:

fits:
 - NNPDF40_nlo_as_01180
 - NNPDF40_nnlo_lowprecision

use_cuts: "nocuts"

Q: 10

description:
 from_: fit

template: report.md

normalize:
 normalize_to: 1

datanorm:
 normalize_to: data

pdfs:
 - from_: fit
 - NNPDF40_nnlo_as_01180_hessian

actions_:
 - fits::fitcontext report

Note that one still needs to set manually other keys like description and pdfs.

from_: Null

As a special case, from_: Null will retrieve the variable from the
current namespace. This comes handy to transform lists of items into
other items. Consider for example:

Base:
 fit: NNPDF40_nnlo_as_01180_1000

Pairs:
 fits:
 - from_: Base
 - from_: null

fits:
 - NNPDF40_nnlo_as_01180_NNPDF31
 - NNPDF40_nnlo_as_01180_collider_only
 - NNPDF40_nnlo_as_01180_DIS_only
 - NNPDF40_nnlo_as_01180_nojets
 - NNPDF40_nnlo_as_01180_noLHCbb
 - NNPDF40_nnlo_as_01180_noLHC
 - NNPDF40_nnlo_as_01180_notop
 - NNPDF40_nnlo_as_01180_noZpT
 - NNPDF40_nnlo_as_01180_nophoton
 - NNPDF40_nnlo_as_01180_ATLASW8TeV
 - NNPDF40_nnlo_as_01180_noATLASCMSDY
 - NNPDF40_nnlo_as_01180_EMC

use_cuts: "fromfit"

printopts:
 print_common: False

description:
 from_: fit

meta:
 author: Zahari Kassabov
 keywords: [nn40final, gallery]

template_text: |
 % Non-default datasets

 The datasets are compared to the default `{@Base fit@}` fit.

 {@with fits::fitcontext@}
 {@fit@}
 ======

 {@description@}

 {@with Pairs@}

 {@printopts print_dataset_differences @}
 {@print_different_cuts@}

 {@endwith@}
 {@endwith@}

actions_:
 - report(main=True, mathjax=True)

	At the beginning, we are printing the name of the fit contained in
Base.

	Then we are iterating over each of the fits (that we
defined explicitly in the config), and using fitcontext to set some
variables inside the with block.

	In the inner block {@with Pairs@}, we are making use of the definition
of Pairs to set the fits variable to contain two fits: the one defined in Base and the
one that changes with each iteration.

	Because the actions print_dataset_differences and print_different_cuts are inside that
with block, the value of the variable fits they see is precisely
this pair, which supersedes our original definition, inside that
block.

The namespaces_ special key

The namespaces_ key can be used to form a list of namespaces in
a similar way as with the {@with@} block in the report. A key difference
is that the namespaces_
block allows the list to be names, and in this way it can interact
with providers expecting a complex input structure. The namespace
elements are separated by :: and have the same meaning as in the
report. Consider the following example:

dataspec_input:
 - fitdeclarations:
 - NNPDF40_nlo_as_01180
 - NNPDF40_nnlo_as_01180
 fits_computed_psedorreplicas_chi2_output: new-alldata/fits_matched_pseudorreplicas_chi2_table.csv
 fits_chi2_paramfits_output: new-alldata/central_global.csv
 badspecs:
 - badcurves: discard
 speclabel: "Global, discard"
 - badcurves: allminimum
 speclabel: "Global, allminimum"

 - fitdeclarations:
 - NNPDF31_nnlo_as_0117_uncorr_collider
 - NNPDF31_nnlo_as_0118_uncorr_collider
 fits_computed_psedorreplicas_chi2_output: new-alldata/collider.csv
 fits_chi2_paramfits_output: new-alldata/collider_central.csv
 badspecs:
 - badcurves: discard
 speclabel: "Collider, discard"
 - badcurves: allminimum
 speclabel: "Collider, allminimum"

dataspecs:
 namespaces_: "dataspec_input::badspecs
 ::fits_as_from_fitdeclarations::fits_name_from_fitdeclarations
 ::use_fits_computed_psedorreplicas_chi2_output::use_fits_chi2_paramfits_output"

meta:
 author: Zahari Kassabov
 title: Summary of the allminimum and discard for global and collider only fits
 keywords: [as]

template_text: |

 We compare the results of the determinations with `allminimum`
 and `discard` on the global and collider only fits.

 # Table

 {@dataspecs_as_value_error_table@}

 # Plot

 {@plot_dataspecs_as_value_error@}

actions_:
 - report(main=True)

Here we are generating a list of namespaces called dataspecs which
the actions dataspecs_as_value_error_table and
plot_dataspecs_as_value_error expect as an input, starting from the
product of each of the two elements in the dataspec_input list and
its corresponding badspecs inner namespace, so that we have four
namespaces in total, labelled “Global, discard”, “Global, allminimum”,
“Collider, discard” and “Collider, allminimum”. We are further
applying production rules to extract the
information we need from the fit names and input files, producing the
corresponding values inside the correct dataspecs entry.

The whole list namespace is then passed as input to the actions (which
are implemented using the collect function).

This advanced functionality allows us to generate almost arbitrary
inputs in a declarative way and using very few primitives, at the cost
of a bit of learning curvature.

Currently the namespaces_ functionality is restricted to generating
namespaces that are used at top level.

Plotting labels

Several resources (PDFs, theories, fits) support a short form where
one specifies the ID required to recover the resource (e.g. LHAPDF ID,
theory ID and fit folder respectively) and also form where a plotting
layer is specified together with the ID. For example:

pdfs:
 - id: NNPDF40_nlo_as_01180
 label: NLO

 - id: NNPDF40_nnlo_as_01180
 label: NNLO

 - id: NNPDF40_nnlo_as_01180_hessian
 label: Hessian NNLO

In all plots the label will be used everywhere the PDF name needs to
be displayed (like in legends and axes).

The plotting labels for datasets are read from the dataset_label key
in the plotting files.

See How to plot PDFs, distances and luminosities for examples.

 Previous
 Next

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

