Point prescriptions for theory covariance matrices

The equations below display the different point prescriptions, as they appear in validphys2.

3 points

Note

theoryids: 163, 180, 173

point_prescription: '3 point'

\[s_{11} = \frac{1}{2}\bigg\{ \Delta_1(+,+)^2 + \Delta_1(-,-)^2 \bigg\}\]
\[s_{12} = \frac{1}{4}\bigg\{\bigg(\Delta_1(+,+) + \Delta_1(-,-) \bigg) \bigg(\Delta_2(+,+) + \Delta_2(-,-) \bigg) \bigg\}\]

3f points

For isolated factorisation scale variation using a 3-point prescription (central, double, half).

Note

theoryids: 163, 177, 176

point_prescription: '3f point'

\[s_{11} = \frac{1}{2}\bigg\{ \Delta_1(+)^2 + \Delta_1(-)^2 \bigg\}\]
\[s_{12} = \frac{1}{2}\bigg\{ \Delta_1(+)\Delta_2(+) + \Delta_1(-)\Delta_2(-) \bigg\}\]

3r points

For isolated renormalisation scale variation using a 3-point prescription (central, double, half).

Note

theoryids: 163, 179, 174

point_prescription: '3r point'

\[s_{11} = \frac{1}{2}\bigg\{ \Delta_1(+)^2 + \Delta_1(-)^2 \bigg\}\]
\[s_{12} = \frac{1}{4}\bigg\{\bigg(\Delta_1(+) + \Delta_1(-) \bigg) \bigg(\Delta_2(+) + \Delta_2(-) \bigg) \bigg\}\]

5 points

Note

theoryids: 163, 177, 176, 179, 174

point_prescription: '5 point'

\[s_{11} = \frac{1}{2}\bigg\{ \Delta_1(+,0)^2 + \Delta_1(-,0)^2 + \Delta_1(0,+)^2 + \Delta_1(0,-)^2 \bigg\}\]
\[\begin{split}\begin{split} s_{12} = \frac{1}{2}\bigg\{ &\Delta_1(+,0)\Delta_2(+,0) + \Delta_1(-,0)\Delta_2(-,0) \bigg\} \\ + \frac{1}{4}\bigg\{ &\bigg(\Delta_1(0,+) + \Delta_1(0,-) \bigg)\bigg(\Delta_2(0,+) + \Delta_2(0,-)\bigg)\bigg\} \end{split}\end{split}\]

Important

This is the sum of 3f points and 3r points.

\(\mathbf{\overline{5}}\) points

Note

theoryids: 163, 180, 173, 175, 178

point_prescription: '5bar point'

\[s_{11} = \frac{1}{2}\bigg\{ \Delta_1(+,+)^2 + \Delta_1(-,-)^2 + \Delta_1(+,-)^2 + \Delta_1(-,+)^2 \bigg\}\]
\[\begin{split}\begin{split} s_{12} = \frac{1}{4}\bigg\{ &\bigg(\Delta_1(+,+) + \Delta_1(+,-)\bigg) \bigg(\Delta_2(+,+) + \Delta_2(+,-) \bigg) \\ + &\bigg(\Delta_1(-,+) + \Delta_1(-,-)\bigg) \bigg(\Delta_2(-,+) + \Delta_2(-,-) \bigg) \bigg\} \end{split}\end{split}\]

7 points - original

Warning

Deprecated prescription!

theoryids: 163, 177, 176, 179, 174, 180, 173

Specify in the runcard seventheories: original

point_prescription: '7 point'

\[\begin{split}\begin{split} s_{11} = \frac{1}{3}\bigg\{ &\Delta_1(+,0)^2 + \Delta_1(-,0)^2 + \Delta_1(0,+)^2 + \Delta_1(0,-)^2 \\ + &\Delta_1(+,+)^2 + \Delta_1(-,-)^2 \bigg\} \end{split}\end{split}\]
\[\begin{split}\begin{split} s_{12} = \frac{1}{6}\bigg\{ &\bigg(\Delta_1(+,0) + \Delta_1(+,+) \bigg) \bigg(\Delta_2(+,0) + \Delta_2(+,+) \bigg) \\ + &\bigg(\Delta_1(-,0)+\Delta_1(-,-)\bigg) \bigg(\Delta_2(-,0) + \Delta_2(-,-) \bigg) \\ + &\bigg(\Delta_1(0,+)+\Delta_1(0,-)\bigg)\bigg(\Delta_2(0,+) + \Delta_2(0,-) \bigg)\bigg\} \end{split}\end{split}\]

7 points - Gavin (default)

Note

theoryids: 163, 177, 176, 179, 174, 180, 173

point_prescription: '7 point'

\[\begin{split}\begin{split} s_{11} = \frac{1}{3}\bigg\{ &\Delta_1(+,0)^2 + \Delta_1(-,0)^2 + \Delta_1(0,+)^2 + \Delta_1(0,-)^2 \\ + &\Delta_1(+,+)^2 + \Delta_1(-,-)^2 \bigg\} \end{split}\end{split}\]
\[\begin{split}\begin{split} s_{12} = \frac{1}{6}\bigg\{ &2\bigg(\Delta_1(+,0)\Delta_2(+,0) + \Delta_1(-,0)\Delta_2(-,0) \bigg) \\ + &\bigg(\Delta_1(0,+)+\Delta_1(0,-)\bigg) \bigg(\Delta_2(0,+) + \Delta_2(0,-) \bigg) \\ + &\bigg(\Delta_1(+,+)+\Delta_1(-,-)\bigg)\bigg(\Delta_2(+,+) + \Delta_2(-,-) \bigg)\bigg\} \end{split}\end{split}\]

9 points

Note

theoryids: 163, 177, 176, 179, 174, 180, 173, 175, 178

point_prescription: '9 point'

\[\begin{split}\begin{split} s_{11} = \frac{1}{4}\bigg\{ &\Delta_1(+,0)^2 + \Delta_1(-,0)^2 + \Delta_1(0,+)^2 + \Delta_1(0,-)^2 \\ + &\Delta_1(+,+)^2 + \Delta_1(+,-)^2 + \Delta_1(-,+)^2 + \Delta_1(-,-)^2 \bigg\} \end{split}\end{split}\]
\[\begin{split}\begin{split} s_{12} = \frac{1}{12}\bigg\{&\bigg(\Delta_1(+,0)+\Delta_1(+,+) + \Delta_1(+,-)\bigg) \bigg(\Delta_2(+,0) + \Delta_2(+,+) + \Delta_2(+,-) \bigg) \\ + &\bigg(\Delta_1(-,0) + \Delta_1(-,+) + \Delta_1(-,-)\bigg)\bigg(\Delta_2(-,0) + \Delta_2(-,+) + \Delta_2(-,-) \bigg) \bigg\}\\ + \frac{1}{8}&\bigg(\Delta_1(0,+)+ \Delta_1(0,-)\bigg)\bigg(\Delta_2(0,+) + \Delta_2(0,-) \bigg) \end{split}\end{split}\]