

 	Getting started
	Fitting code: n3fit
	Code for data: validphys	Introduction to validphys 2
	Some things that validphys does
	Using validphys
	How validphys handles data	Python based data objects
	Filtering data	Introduction
	Cuts as declarative filters
	Defaults
	Filters
	Overwriting filters and default values
	Adding filters to the default ones
	Examples

	The theorycovariance module
	Data specification

	More detailed functionality

	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Code for data: validphys
	Filtering data
	
 View page source

Filtering data

Introduction

In PDF fits, not all the data provided by the experimental
collaborations are useful. For example, we may wish to discard certain
datapoints for which we know small-x resummation or electroweak
corrections are important. These effects are problematic since we know
them to be important, but we cannot account for them.

In this light, we produce cuts of the data, by filtering data points
which we know are free of the above and other problems.

In validphys, the cuts are handled by the validphys.filters
alongside filter definitions and defaults found within
validphys.cuts.

Cuts as declarative filters

Due to the nature of data cuts, it is important to be transparent about
which cuts are being applied to which dataset and/or process. Moreover,
it is useful for the rules defining the data cut to be readable such
that a non-developmental user can read and understand the nature of the
rule by making these rules functions of kinematic variables such as
p_T or Q2.

In much the same vein, it is useful for any default values used in the
rules to be readily accessible. For example, suppose there is a minimum
value for the square transferred momenta in the DIS process q2min,
that is used widely by many different rules. It is important for this
variable to be in an obvious and easily accessed location.

Defaults

There are certain values which are commonly used by many rules. For
example, the value q2min usually takes the value 3.49 or
w2min is usually set to 12.5.

It is thus useful to define these default values somewhere. These values
can be found within validphys.cuts inside the defaults.yaml
file. One can overwrite these values and this is discussed later.

Filters

In validphys 2 the default filter rules used can be found in the
validphys.cuts module within the filter.yaml file. This file is
read by validphys and is interpreted as a list of
dictionaries.

By default, these filters can have several entries:

	dataset: The dataset this rule applies

	process_type: The process type this rule applies to

	rule: The Python code defining the rule for this filter

	reason: (optional) The reason this rule was needed

	local_variables: (optional) Any additional, non-standard local
variables the user wishes to add for this rule only.

Note

At least one of dataset or process_type is required.
Additionally, a rule entry is always required.

The rule entry in the rule definition is evaluated as
Python code. If the rule does not apply to this particular datapoint
(say the dataset names don’t match) then we return None indicating
this rule had nothing to do with this particular datapoint. In this
case, we move on to the next rule. However, if the process type or
dataset defined in the rule match that of the datapoint, we evaluate the
rule. If the rule evaluates to False we discard the point, if
instead it returns True we move on to the next rule. If by the time
all the rules have been evaluated and we have yet to return False,
then the datapoint passes and it is kept.

In addition, the user can add any theory parameter they wish. For
example, one could add PTO: NNLO which means to evaluate the rule
only if the theory is NNLO. These are discussed further here.
One can see a full list of possible theory parameters using:
vp-checktheory <theory id>

Important

The rule entry should be interpreted as a str type within Python. As such
a rule such as rule: True is not valid since this is read in as a boolean,
however, rule: "True" is perfectly valid notation. Moreover, the string
itself should be valid Python code.

By default the user can use the following non-builtin mathematical
functions in their rules: sqrt, log or fabs (floating point
absolute value). In addition, one can use any numpy function using
np.<function> in their rule definition. For example:

rule: "np.exp(x) > 0.1"

The kinematic variables that can be used within the rule depends on the
process type. A full list of available parameters can be found by
running:

In [1]: from NNPDF import CommonData

In [2]: print(dict(CommonData.kinLabel))

The user may additionally define their own variables by adding the
local_variables field to their rule. For example, I can use w2
in my rule, so long as I define what I mean by w2:

local_variables:
 w2: Q2 * (1 - x) / x

Danger

Defining local_variables is non-commutative. The order of definition is important.
If a local variable depends on other local variables, then the user must ensure all other
dependencies have already been defined.

The following would raise an error

local_variables:
 w: sqrt(w2)
 w2: Q2 * (1 - x) / x

The following would not

local_variables:
 w2: Q2 * (1 - x) / x
 w: sqrt(w2)

Note

local_variables have a local scope. They apply to only the rule within which
they are defined.

Theory parameters and perturbative orders

There are particular situations in which we only want to evaluate a rule
if the theory input for the PDF matches certain conditions. For example,
it may be the case we only keep the datapoint provided the theory
includes intrinsic charm or is evaluated at NNLO.

Suppose for example I wish the rule to only be evaluated if the theory
includes intrinsic charm. We note in the theory.get_description(),
the relevant entry is 'IC': 1 (we use here theory 53 for
demonstration purposes). Thus if I want my rule to be applied only if
the theory has intrinsic charm, I simply add to my rule:

IC: True

Similarly I can condition on flavour number scheme. I again check
theory.get_description() and note that the relevant key is
'FNS'. Thus to only evaluate my rule if the FNS is FONLL-C,
simply add:

FNS: FONLL-C

Similarly, one can add any such theory description key into their
rule.

Tip

Sometimes, we may want to evaluate a rule provided the perturbative order is within
a certain range. For example, we may want a rule to be evaluated if the perturbative
order is strictly less than NLO. This can be done by using directives succeeding the
PTO declaration.

In the above example, one would thus simply use:

PTO: NLO-

The following are a list of possible directives which can succeed a
PTO declaration: * + Evaluate this rule if the theory PTO
is greater than or equal to the preceeding PTO * - Evaluate
this rule if the theory PTO is strictly less than the preceeding PTO
* ! Evaluate this rule if the theory PTO is not equal to the
preceeding PTO

Examples are:

PTO: NNLO!
PTO: N3LO-
PTO: LO+

If the user doesn’t specify a directive then that implies the rule will
only be evaluated if the declared PTO matches exactly with the
PTO of the theory.

Overwriting filters and default values

One can overwrite the default behaviour by adding to the fit runcard.

Custom rules can be added by adding a filter_rules: namespace in the
fit runcard. This should be a list of rules in the format outlined
above. For example:

filter_rules:
 - dataset: NMC
 rule: x > 0.2

Warning

	Adding a filter_rules section to the runcard overwrites the default
	behaviour and does not append to the default behaviour. By adding the
above code snippet, this would be the only rule used by
vp-setupfit. Use the added_filter_rules option to append rules when needed.

Similarly the defaults can be overwritten by adding a
filter_defaults namespace to the runcard. For example:

filter_defaults:
 q2min: 5
 w2min: 10

As in the case of the rules, this overwrites the original defaults and
does not append to them.

Attention

To ensure backwards compatibility with old style runcards, if q2min and w2min are defined
under the datacuts namespace within the runcard, these values are read in and override the default
values. However, if this overriding occurs, a warning is displayed in standard output.

Adding filters to the default ones

An added_filter_rules key may be specified in the runcard. Its effect is to
append a list of filter rules to the rules obtained by the mechanisms described above. It is particularly useful when one wishes to analyze the effect of a sliding cut:

fit: mm_sm_hllhc_seed1_221222

pdf:
 from_: fit

Retrieve default filters
use_cuts: "internal"

theoryid: 200

dataset_inputs:
 from_: fit

dataspecs:
 - speclabel: "Filter: 50"
 added_filter_rules:
 - process_type: EWK_MLL
 local_variables:
 mass_threshold: 50
 reason: "Variable mass filter"
 rule: "M_ll < mass_threshold"

 - speclabel: "Filter: 500"
 added_filter_rules:
 - process_type: EWK_MLL
 local_variables:
 mass_threshold: 500
 reason: "Variable mass filter"
 rule: "M_ll < mass_threshold"

template_text: |
 # χ² as a function of sliding cut
 {@dataspecs_chi2_table@}

actions_:
 - report(main=True)

The value of added_filter_rules should be a list of rules with the same format as filter_rules.

Examples

Consider the following filter from the filters.yaml file:

- dataset: ATLASZPT7TEV
 reason: Avoid the region where resummation effects become important.
 rule: "p_T2 >= 30**2"

this rule applies only to the ATLASZPT7TEV dataset and keeps all
datapoints with a transverse momentum greater than or equal to 30 MeV.
The reason for the conception of this rule is also provided and we see
that it is due to the fact that datapoints with smaller transverse
momentum will be affected by resummation effects.

Now consider the slightly more complicated example:

- dataset: CMSDY2D12
 reason: Remove data points for which electroweak corrections are large.
 PTO: NNLO-
 local_variables:
 M: sqrt(M2)
 min_M: 30.0
 max_rapidity: 2.2
 rule: M >= min_M and etay <= max_rapidity

This rule only applies to CMSDY2D12. I wish for the rule to only
be evaluated provided the theory perturbative order is strictly
less than NNLO (i.e LO or NLO). I check what the process type of
CMSDY2D12 is:

In [1]: from validphys.loader import Loader

In [2]: l = Loader()

In [3]: cd = l.check_commondata("CMSDY2D12")

In [4]: cd.process_type
Out[4]: 'EWK_RAP'

Then cross check this against NNPDF.CommonData.kinLabels to see that
the relevant kinematic variables are:

'EWK_RAP': ('etay', 'M2', 'sqrts'),

I choose to define custom local_variables in the form of M which
is the square root of the invariant mass squared, i.e. just the
invariant mass. Moreover, I define a value for minimum M and maximum
rapidity which I use in my rule as cutoff values.

The rule itself is then self-explanatory, notice however, it is
written in valid Python syntax. Finally, the reason for the rule is
given which is to cut datapoints which are affected by electroweak
corrections.

As a final example consider the following rule:

- process_type: DIS_NCP_CH
 reason: |
 Missing higher order corrections to Delta F_IC, the piece that needs
 to be added to the FONLL-C calculation in the case of fitted charm.
 FNS: FONLL-C
 IC: True
 rule: "Q2 > 8"

Instead of this rule applying to one particular dataset, we see it is
applicable to all datasets that have process type DIS_NCP_CH. The
reason for the rule is rather involved and so yaml’s multiline
string syntax is used.

Finally, the user wishes for the rule to be evaluated only if
the theory input has the FONNL-C flavour number scheme and if the theory
uses intrinsic charm. The rule itself is trivial.

 Previous
 Next

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

