

 	Getting started
	Fitting code: n3fit
	Code for data: validphys	Introduction to validphys 2
	Some things that validphys does
	Using validphys
	How validphys handles data
	More detailed functionality	The design of validphys 2
	Namespaces
	Resolving dependencies
	The collect function
	Checking providers
	Defining custom pipelines

	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Code for data: validphys
	Resolving dependencies
	
 View page source

Resolving dependencies

Dependencies are resolved automatically by reportengine when the
client applications follow a certain convention.

A few things that validphys needs to do are:

	Provide a declarative interface where the user specifies only the
amount of information needed to specify the requirements.

	Be usable as a normal Python library.

	Reuse the computations that are common to several actions.

In order to do all that, one declares “provider modules” (which is
done in validphys.app), which are nothing but normal Python files
containing functions (and thus can be used as a library). The
convention in reportengine is that a parameter with the same name as
a provider function specifies that that function is a dependency.

Imagine we want to have two plotting tools plot1 and plot2, each
of which takes as an argument the result of the same computation,
results, which in turn need a PDF set entered by the user to be
computed. One would declare the functions as follows:

def results(pdf):
 #Compute the results
 ...

def plot1(results):
 #Take the result and produce a plot of type 1.
 ...

def plot2(results):
 #Take the result and produce a plot of type 2.
 ...

Then, an input card like the following:

pdf: NNPDF30_nlo_as_0118

actions_:
 - plot1
 - plot2

would result in the following directed acyclic graph (or DAG):

The important point to note is that parameter names determine the
dependencies by default.

To address the inflexibility that results from the way we choose to
automatically assign dependencies, each action is assigned a unique
namespace specification. This allows one to
specify actions with several different parameters. Let’s make the
example above more complicated:

def results(pdf):
 #Compute the results
 ...

def plot1(results, parameter):
 #Take the result and produce a plot of type 1.
 ...

def plot2(results, parameter):
 #Take the result and produce a plot of type 2.
 ...

We can request a parameter scan like this:

pdf: NNPDF30_nlo_as_0118

scan_params:
 - parameter: 5
 - parameter: 10
 - parameter: 20

actions_:
 - scan_params plot1
 - scan_params plot2

which would result in the following computation:

We have requested the two plots to be computed once in each of the
three namespaces spanned by scan_params. The actions are in general
not computed in the requested namespace, but rather in the
outermost one that satisfies all the dependencies (there is also
a unique private stack frame per action not shown in the figures
above). That’s why, in the graph above, results appears only once:
since it doesn’t depend on the value of parameter (it doesn’t appear
in its signature), it is computed in the root namespace, rather than
once in each of the scan_params namespaces. If we instead had this:

pdfs:
 - NNPDF40_nnlo_as_01180
 - CT14nlo

scan_params:
 - parameter: 5
 - parameter: 10

actions_:
 - pdfs::scan_params plot1

The corresponding graph would be:

since results does depend on the pdf.

 Previous
 Next

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

