

 	Getting started
	Fitting code: n3fit
	Code for data: validphys	Introduction to validphys 2
	Some things that validphys does
	Using validphys
	How validphys handles data
	More detailed functionality	The design of validphys 2
	Namespaces
	Resolving dependencies
	The collect function
	Checking providers
	Defining custom pipelines

	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Code for data: validphys
	Checking providers
	
 View page source

Checking providers

Providers can have checks that verify that all the required preconditions
are met. Checks are executed at the time at which the call node has
just been created and all of its required dependencies are either in the
namespace or scheduled to be produced. Checking functions take the
current state of the namespace, as well as an unspecified set of other
parameters (the interface is as yet undecided!).
Therefore check functions should accept **kwargs arguments. Checks
are decorated with the reportengine.checks.make_argcheck function.
If checks do not pass, they must raise
a reportengine.checks.CheckError exception.

For example, given a reweighting function, we may want to check that
the current PDF (the value that will be passed to the function) has
a Monte Carlo error type. We might define a check like:

@make_check
def check_pdf_is_montecarlo(ns, **kwargs):
 pdf = ns['pdf']
 etype = pdf.ErrorType
 if etype != 'replicas':
 raise CheckError("Error type of PDF %s must be 'replicas' and not %s"
 % (pdf, etype))

Checks can be used (abused) to modify the namespace before the action
function sees it. This can be used for some advanced context dependent
argument default setting (for example setting default file names based
on the nsspec).

The check is associated to the provider function by simply applying it
as a decorator:

@check_pdf_is_montecarlo
def chi2_data_for_reweighting_experiments(pdf, args):
 ...

A slightly higher level interface to checks is implemented by the
make_argcheck decorator. Instead of receiving a namespace and other
unspecified arguments, like the functions decorated with make_check,
it simply takes the arguments we want to test. The function can return
a dictionary that will be used to update the namespace (but that is
not required, it can also not return anything).

For example, the check_pdf_is_montecarlo above could be more easily
implemented like:

@make_argcheck
def check_pdf_is_montecarlo(pdf):
 etype = pdf.ErrorType
 if etype != 'replicas':
 raise CheckError("Error type of PDF %s must be 'replicas' and not %s"
 % (pdf, etype))

make_argcheck should be preferred, since it is more explicit, and
could be extended with more functionality later on. However, it is
newer and not currently used very much in the code.

Checks have no effect outside of reportengine (unless you call them
explicitly).

Ideally, the checks should be sufficient to guarantee that the
actions will not fail at runtime.

 Previous
 Next

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

