Source code for n3fit.backends.keras_backend.constraints

"""
    Implementations of weight constraints for initializers
"""

import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.constraints import MinMaxNorm


[docs] class MinMaxWeight(MinMaxNorm): """ Small override to the MinMaxNorm Keras class to not look at the absolute value This version looks at the sum instead of at the norm """ def __init__(self, min_value, max_value, **kwargs): super().__init__(min_value=min_value, max_value=max_value, axis=1, **kwargs) def __call__(self, w): norms = K.sum(w, axis=self.axis, keepdims=True) desired = ( self.rate * K.clip(norms, self.min_value, self.max_value) + (1 - self.rate) * norms ) return w * desired / (K.epsilon() + norms)