 
  
    
      
        

          
          
          
            
              
          

  
    
    
    
  



        

              	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials	Running fits
	Analysing results
	Adding new data	How to implement a new experiment in buildmaster
	How to generate APPLgrid and FastNLO tables
	How to benchmark and store APPLgrid/FastNLO tables



	Closure tests
	Special PDF sets
	Miscellaneous






        

      

    

    
          
          NNPDF
      

      
        
          
  	
	Tutorials
	How to implement a new experiment in buildmaster
	
             View page source
      


  



          
           
             
  
How to implement a new experiment in buildmaster

Buildmaster is the code that allows the user to generate the DATA
and SYSTYPE files that contain, respectively, the experimental data
and the information pertaining to the treatment of systematic errors.
Data made available by experimental collaborations comes in a variety of
formats: for use in a fitting code, this data must be converted into a
common format, that contains all the required information for use in PDF
fitting. Such a conversion is realised by the buildmaster code according
to the layout described in exp_data_files.

The user is strongly encouraged to go through that section with care, in
order to familiarise himself with the features of the experimental data,
in general, and the nomenclature of the NNPDF code, in particular.

To implement a new experiment in buildmaster the first thing to do is to
find the relevant experimental information. As mentioned above, this can
come in a variety of formats. Usually, this is made available from the
hepdata repository as soon as the corresponding preprint is accepted
for publication. Additional useful resources are the public pages of the
(LHC) experimental collaborations:

	ATLAS

	CMS

	LHCb



A careful reading of the experimental paper is strongly recommended to
understand the information provided, in particular concerning the origin
and the treatment of uncertainties.

Once the details of the experimental measurement are clear, one should
assign the corresponding experiment a name. Such a name must follow the
convention

<name_exp>_<name_obs>_[<extra_info>]





where is the <name_exp> is name of the experiment in full
(e.g. ATLAS, CMS, LHCB, …), <name_obs>
is the name of the observable (e.g. 1JET, SINGLETOP, TTB, …), and
[<extra_info>] (optional) is a set of strings, separated by underscore, that
encapsulate additional information needed to univocally identify the
measurement (e.g. the c.m. energy, the final state, the luminosity, the
jet radius, …).

The experimental information retrieved from the above must be collected
(ideally with minimal editing and in plain text format) in a new
directory

buildmaster/rawdata/<name_exp>_<name_obs>_[<extra_info>]





A metadata file has to be created in the .yaml format as

buildmaster/meta/<name_exp>_<name_obs>_[<extra_info>].yaml





with the following structure

ndata:    <number of datapoints>
nsys:     <number of systematic errors>
setname:  <setname in double quotes, i.e. "<name_exp>_<name_obs>_[<extra_info>]">
proctype: <process type> in double quotes)





A list of the available process types can be found at process_type_label.
If the process type corresponding to the experiment under consideration
is not contained in that list, a new process type should be defined and
implemented.

Then the user has to create the header for a new class with the dataset
name in

/buildmaster/inc/<name_exp>_<name_obs>_[<extra_info>].h





as follows

class MY_NEW_DATASET_CLASSFilter: public CommonData {
public: MY_NEW_DATASET_CLASSFilter("MY_NEW_DATASET_NAME") { ReadData(); }
private:
    void ReadData();
}





and implement the ReadData() function in

/buildmaster/filter/<name_exp>_<name_obs>_[<extra_info>].cc





Such a function should read from the rawdata file

	the kinematic variables required for the specific process under consideration:
fKin1, fKin2, fKin3

	the data: fData

	the statistical uncertainty: fStat

	the systematic uncertainties: fSys



Important remarks.

	The relevant information regarding uncertainty correlations must be
consistently implemented. Depending on the specific experiment one is
considering, this may be provided either as a full breakdown of
correlated systematics or through a covariance (or correlation)
matrix. In the latter case, if the dataset is made by N data,
N systematics have to be produced from the decomposition of the
covariance matrix, using the function genArtSys (in
buildmaster/src/buildmaster_utils.cc). Sometimes a covariance
matrix is provided also for the statistical uncertainties. In such
cases the fStat variable should be set to zero, and the
statistical uncertainty should be implemented as a set of N
additional artificial systematics obtained from the decomposition of
the systematic covariance matrix through genArtSys.

	Uncertainties are sometimes provided as sets of independent (left and
right) asymmetric values. They are usually estimated, data point by
data point, by varying upwards and downwards the nuisance parameters
in the experimental model used for their determination. Note that an
upwards (downwards) variation of the nuisance parameters does not
necessarily generate a positive (negative) variation of the data
point expectation value. Therefore, left and right uncertainties can
be both positive, both negative, positive and negative, or negative
and positive. If the left uncertainty is negative and the right
uncertainty is positive (i.e. a downwards shift of the nuisance
parameters generates a decrease of the data point expectation value
and an upwards shift of the nuisance parameters generates an increase
of the data point expectation value), they can be symmetrised using
the D’Agostini rule, as implemented in the symmetriseErrors
function (in buildmaster/src/buildmaster_utils.cc). The data
point expectation value should be shifted accordingly. If the signs
of the left and right asymmetric uncertainties are mixed, other
prescriptions (to preserve correlations/anticorrelations) must be
adopted, see the implement

	Consider testing that the additive and multiplicative columns of the
commondata are self-consistent. The multiplicative columns should be related
to the additive columns (schematically) by
add_columns = mult_columns * central_values * 1e-2. The easiest
way to test this is to add the newly implemented dataset to the list
of datasets tested in validphys.tests.test_commondata_columns.
If you commit this change to the repo then the CI will always check this is
the case, in case somebody edits the dataset in the future.






           

          

          
         Previous
        Next 
    


  


  
    © Copyright 2021, NNPDF collaboration.

  


  Built with Sphinx using a
    theme
    provided by Read the Docs.
   


        

      

    
  

   

