validphys.tests package
Subpackages
Submodules
validphys.tests.conftest module
validphys.tests.test_alpha_s_bundle_pdf module
validphys.tests.test_arclengths module
validphys.tests.test_calcutils module
validphys.tests.test_closuretest module
test_closuretest.py
contains some unit tests for closure test estimators
validphys.tests.test_commondataparser module
validphys.tests.test_core module
validphys.tests.test_covmatreg module
validphys.tests.test_covmats module
validphys.tests.test_cuts module
validphys.tests.test_datafiles module
validphys.tests.test_effexponents module
validphys.tests.test_filter_rules module
validphys.tests.test_fitdata module
validphys.tests.test_fitveto module
validphys.tests.test_hessian2mc module
validphys.tests.test_loader module
validphys.tests.test_mc2hessian module
validphys.tests.test_metaexps module
test_metaexps
Test that the experiments key defined in the commondata meta data, which is subsequently used for grouping makes sense.
- validphys.tests.test_metaexps.test_no_systematic_overlaps()[source]
Take every available dataset and check that there are no overlapping systematics when the grouping is by metadata experiments.
This is important because we make the assumption that the total covariance matrix is block diagonal in metadata experiment, and it is therefore used as an optimisation in several places.
validphys.tests.test_multiclosure module
validphys.tests.test_overfit_metric module
validphys.tests.test_plots module
validphys.tests.test_postfit module
validphys.tests.test_pseudodata module
validphys.tests.test_pyfkdata module
validphys.tests.test_pythonmakereplica module
validphys.tests.test_regressions module
validphys.tests.test_results module
Tests for functions in the validphys.results file.
- validphys.tests.test_results.test_groups_central_values_no_table(data_internal_cuts_config)[source]
Check if the output of groups_central_values_no_table agrees with the replica 0 value calculated by calling group_result_table_no_table. group_result_table_no_table also computes the predictions for all other replicas.
validphys.tests.test_scalevariationtheoryids module
validphys.tests.test_sumrules module
validphys.tests.test_tableloader module
validphys.tests.test_theorydbutils module
validphys.tests.test_totalchi2 module
test_totalchi2.py
test that the action which calculates the total chi2 produces sensible results for both MC and hessian pdfs
- validphys.tests.test_totalchi2.test_abs_chi2_data(single_data_internal_cuts_config)[source]
Test abs_chi2_data with a normal dataset
- validphys.tests.test_totalchi2.test_abs_chi2_data_singlepoint(single_data_single_point_internal_cuts_config)[source]
Test abs_chi2_data with the corner case of a single datapoint dataset
- validphys.tests.test_totalchi2.test_hessian_total_chi2(hessian_data_internal_cuts_config)[source]
testing total chi2 for hessian pdf
In particular check that the sum across experiments is handled correctly
and that calculating the total chi2 from the flat list of datasets gives the same answer as using
total_chi2_data
- validphys.tests.test_totalchi2.test_mc_total_chi2(data_internal_cuts_config)[source]
Testing total chi2 for mc pdf
In particular check that the sum across experiments is handled correctly
and that calculating the total chi2 from the flat list of datasets gives the same answer as using
total_chi2_data
validphys.tests.test_utils module
validphys.tests.test_vplistscript module
test_vplistscript.py
Module for testing vp-list. The output of which is dynamic and so we just check that the script runs and gives some output
- validphys.tests.test_vplistscript.test_listdatasets()[source]
Checks listing datasets returns output
validphys.tests.test_weights module
test_weights.py
- validphys.tests.test_weights.test_chi2_arithmetic(weighted_data_witht0_internal_cuts_config)[source]
- validphys.tests.test_weights.test_disable_weights(weighted_data_witht0_internal_cuts_config)[source]