import contextlib
import pathlib
import shutil
import tempfile
import numpy as np
[docs]
def generate_path_filtered_data(fit_path, setname):
"""Utility to ensure that both the loader and tools like setupfit utilize the same convention
to generate the names of generated pseudodata"""
data_path = fit_path / "filter" / setname / f"filtered_data_{setname}.yaml"
unc_path = data_path.with_name(f"filtered_uncertainties_{setname}.yaml")
return data_path, unc_path
[docs]
@contextlib.contextmanager
def tempfile_cleaner(root, exit_func, exc, prefix=None, **kwargs):
"""A context manager to handle temporary directory creation and
clean-up upon raising an expected exception.
Parameters
----------
root: str
The root directory to create the temporary directory in.
exit_func: Callable
The exit function to call upon exiting the context manager.
Usually one of ``shutil.move`` or ``shutil.rmtree``. Use the former
if the temporary directory will be the final result directory and the
latter if the temporary directory will contain the result directory, for
example when downloading a resource.
exc: Exception
The exception to catch within the ``with`` block.
prefix: optional[str]
A prefix to prepend to the temporary directory.
**kwargs: dict
Keyword arguments to provide to ``exit_func``.
Returns
-------
tempdir: pathlib.Path
The path to the temporary directory.
Example
-------
The following example creates a temporary directory prepended with
``tutorial_`` in the ``/tmp`` directory. The context manager will listen
for a ``KeyboardInterrupt`` and will clean up if this exception is
raised. Upon completion of the ``with`` block, it will rename the
temporary to ``completed`` as the ``dst``, using ``shutil.move``. The
final directory will contain an empty file called ``new_file``, which
we created within the ``with`` block.
.. code-block:: python
:linenos:
import shutil
from validphys.utils import tempfile_cleaner
with tempfile_cleaner(
root="/tmp",
exit_func=shutil.move,
exc=KeyboardInterrupt,
prefix="tutorial_",
dst="completed",
) as tempdir:
new_file = tempdir / "new_file"
input("Press enter to continue or Ctrl-C to interrupt:\\n")
new_file.touch()
"""
try:
tempdir = pathlib.Path(tempfile.mkdtemp(prefix=prefix, dir=root))
yield tempdir
except exc:
shutil.rmtree(tempdir)
raise
else:
# e.g shutil.rmtree, shutil.move etc
exit_func(tempdir, **kwargs)
[docs]
def split_by(it, crit):
"""Split ``it`` in two lists, the first is such that ``crit`` evaluates to
True and the second such it doesn't. Crit can be either a function or an
iterable (in this case the original ``it`` will be sliced if the length of
``crit`` is smaller)."""
true, false = [], []
if callable(crit):
for ele in it:
if crit(ele):
true.append(ele)
else:
false.append(ele)
elif hasattr(crit, '__iter__'):
for keep, ele in zip(crit, it):
if keep:
true.append(ele)
else:
false.append(ele)
else:
raise TypeError("Crit must be a function or a sequence")
return true, false
# Copied from smpdf.utils
[docs]
def split_ranges(a, cond=None, *, filter_falses=False):
"""Split ``a`` so that each range has the same
value for ``cond`` . If ``filter_falses`` is true, only the ranges
for which the
condition is true will be returned."""
if cond is None:
cond = a
cond = cond.astype(bool)
d = np.r_[False, cond[1:] ^ cond[:-1]]
split_at = np.argwhere(d)
splits = np.split(a, np.ravel(split_at))
if filter_falses:
# Evaluate condition at split points
it = iter(cond[np.r_[0, np.ravel(split_at)]])
return [s for s in splits if next(it)]
else:
return splits
[docs]
def sane_groupby_iter(df, by, *args, **kwargs):
"""Iterate groupby in such a way that first value is always the tuple of
the common values.
As a concenience for plotting, if by is None, yield the empty string and
the whole dataframe.
"""
if by is None or not by:
yield ('',), df
return
gb = df.groupby(by, *args, **kwargs)
for same_vals, table in gb:
if not isinstance(same_vals, tuple):
same_vals = (same_vals,)
yield same_vals, table
[docs]
def common_prefix(*s):
"""Return the longest string that is a prefix to both s1 and s2"""
small, big = min(s), max(s)
for i, c in enumerate(small):
if big[i] != c:
return small[:i]
return small
[docs]
def scale_from_grid(grid):
"""Guess the appropriate matplotlib scale from a grid object.
Returns ``'linear'`` if the scale of the grid object is linear,
and otherwise ``' log'``."""
return 'linear' if grid.scale == 'linear' else 'log'