Source code for validphys.plotutils

"""
Basic utilities for plotting functions.
"""
from collections import namedtuple
import functools
import itertools
import logging

import matplotlib as mpl
from matplotlib import ticker, transforms
import matplotlib.collections as mcollections
from matplotlib.figure import Figure
from matplotlib.markers import MarkerStyle
import matplotlib.patches as mpatches
import matplotlib.scale as mscale
import numpy as np
import scipy.stats as stats

from reportengine.floatformatting import format_number

log = logging.getLogger(__name__)


[docs] def subplots(figsize=None, nrows=1, ncols=1, sharex=False, sharey=False, **kwargs): """ matplotlib.figure wrapper used to generate a figure and add subplots. Use matplotlib.figure.Figure() objects to avoid importing ``pyplot`` anywhere. The reason is that pyplot maintains a global state that makes it misbehave in multithreaded applications such when executed under dask parallel mode. Parameters ---------- figsize : 2-tuple of floats defaults is None nrows, ncols : int, default 1 sharex, sharey : bool, default False Returns ------- tuple fig, ax = (matplotlib.figure.Figure, fig.subplots) """ fig = Figure(figsize=figsize) ax = fig.subplots(nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey, **kwargs) return fig, ax
[docs] def add_subplot(figsize=None, projection=None, **kwargs): """ matplotlib.figure wrapper used to generate a figure and add a subplot. Use matplotlib.figure.Figure() objects to avoid importing ``pyplot`` anywhere. The reason is that pyplot maintains a global state that makes it misbehave in multithreaded applications such when executed under dask parallel mode. Parameters ---------- figsize : 2-tuple of floats default is None projections : The projection type of the subplot (Axes). default is None Returns ------- tuple fig, ax = (matplotlib.figure.Figure, fig.add_subplot) """ fig = Figure(figsize=figsize) ax = fig.add_subplot(projection=projection, **kwargs) return fig, ax
[docs] def ax_or_gca(f): """A decorator. When applied to a function, the keyword argument ``ax`` will automatically be filled with the current axis, if it was None.""" @functools.wraps(f) def _f(*args, **kwargs): if 'ax' not in kwargs or kwargs['ax'] is None: kwargs['ax'] = Figure().add_subplot(1, 1, 1) return f(*args, **kwargs) return _f
[docs] def ax_or_newfig(f): """A decorator. When applied to a function, the keyword argument ``ax`` will automatically be filled with the a new axis corresponding to an empty, if it was None.""" @functools.wraps(f) def _f(*args, **kwargs): noax = 'ax' not in kwargs or kwargs['ax'] is None if noax: fig = Figure() kwargs['ax'] = fig.add_subplot(1, 1, 1) result = f(*args, **kwargs) if noax: kwargs['ax'].legend(loc='best') return result return _f
[docs] def frame_center(ax, x, values): """Set the `ylims` of the axis ``ax`` to appropriately display ``values``, which can be 1 or 2D and are assumed to be sampled uniformly in the coordinates of the plot (in the second dimension, for 2D arrays).""" values = np.atleast_2d(values) scale = mscale.scale_factory(ax.xaxis.get_scale(), ax.xaxis) t = scale.get_transform() tx = t.transform(x) absxmax, absxmin = np.max(tx), np.min(tx) l = absxmax - absxmin center = l / 2 + absxmin dist = np.abs(tx - center) # Require some margin around the center close_region_mask = np.where(dist < l / 10) close_vals = values[:, close_region_mask] close_anchor_max = np.percentile(np.percentile(close_vals, 95, axis=0), 95) close_anchor_min = np.percentile(np.percentile(close_vals, 5, axis=0), 5) close_anchor_min, close_anchor_max = expand_margin(close_anchor_min, close_anchor_max, 1.4) # And to see at least 50% everywhere in t medium_region_mask = np.where(dist < l / 2.5) medium_vals = values[:, medium_region_mask] medium_anchor_max = np.percentile(np.percentile(medium_vals, 75, axis=0), 95) medium_anchor_min = np.percentile(np.percentile(medium_vals, 25, axis=0), 5) medium_anchor_min, medium_anchor_max = expand_margin(medium_anchor_min, medium_anchor_max, 1.1) view_max = max((close_anchor_max, medium_anchor_max)) view_min = min((close_anchor_min, medium_anchor_min)) amin, amax = ax.get_ylim() # Fix edge cases where the limits are nan or infinite # (e.g. when dividing by zero in the whole range) if not np.isfinite(view_min): view_min = amin if not np.isfinite(view_max): view_max = amax ax.set_ylim(max(view_min, amin), min(view_max, amax))
[docs] def expand_margin(a, b, proportion): """Return a pair of numbers that have the same mean as ``(a,b)`` and their distance is ``proportion`` times bigger.""" halfdiff = (b - a) / 2 center = a + halfdiff expansion = halfdiff * proportion return center - expansion, center + expansion
[docs] def hatch_iter(): """An infinite iterator that yields increasingly denser patterns of hatches suitable for passing as the ``hatch`` argument of matplotlib functions.""" hatches = "/ \\ - + o O".split() i = 1 while True: for hatch in hatches: yield hatch * i i += 1
[docs] def marker_iter_scatter(): """Yield the possible matplotplib.markers.Markersyle instances with different fillsyles and markers. This can be passed to ``plt.scatter``. For ``plt.plot``, use ``marker_iter_scatter``. """ while True: for fill in MarkerStyle.fillstyles: for shape in MarkerStyle.filled_markers: yield MarkerStyle(marker=shape, fillstyle=fill)
[docs] def marker_iter_plot(): """Because of the mpl strange interface, markers work differently in plots and scatter. This is the same as `marker_iter_scatter`, but returns kwargs to be passed to ``plt.plot()``""" for ms in marker_iter_scatter(): yield {'marker': ms.get_marker(), 'fillstyle': ms.get_fillstyle()}
[docs] def color_iter(): """Yield the colors in the cycle defined in the matplotlib style. When the colores are exhausted a warning will be logged and the cycle will be repeated infinitely. Therefore this avoids the overflow error at runtime when using matplotlib's ``f'C{i}'`` color specification (equivalent to ``colors[i]``) when ``i>len(colors)``""" color_list = [prop['color'] for prop in mpl.rcParams['axes.prop_cycle']] yield from color_list log.warning("Color cycle exhausted. Will repeat colors.") yield from itertools.cycle(color_list)
[docs] def scalar_log_formatter(): """Return a matplotlib formatter to display powers of 10 in a log rather than exponential notation. Returns ------- formatter : ticker.FuncFormatter an object that can be passed to the ``set_major_formatter`` matplotlib functions. Examples -------- >>> from matplotlib.figure import Figure >>> fig = Figure() >>> ax = fig.subplots() >>> ax.plot([0.01, 0.1, 1, 10, 100]) >>> ax.set_yscale("log") >>> ax.yaxis.set_major_formatter(scalar_log_formatter()) """ # See https://stackoverflow.com/a/33213196 def formatter(y, _pos): decimalplaces = int(np.maximum(-np.log10(y), 0)) # =0 for numbers >=1 # Insert that number into a format string formatstring = f"{{:.{decimalplaces}f}}" # Return the formatted tick label return formatstring.format(y) return ticker.FuncFormatter(formatter)
HandlerSpec = namedtuple('HandelrSpec', ["color", "alpha", "hatch", "outer"])
[docs] class ComposedHandler: """Legend artist for PDF plots."""
[docs] def legend_artist(self, legend, orig_handle, fontsize, handlebox): x0, y0 = handlebox.xdescent, handlebox.ydescent width, height = handlebox.width, handlebox.height patches = [] if orig_handle.outer: wpad = width * 0.1 hpad = height * 0.1 edges = 'none' outer = mpatches.Rectangle( [x0, y0], width, height, facecolor='none', linestyle='dashed', edgecolor=orig_handle.color, transform=handlebox.get_transform(), ) handlebox.add_artist(outer) patches.append(outer) else: wpad = hpad = 0 edges = 'black' patch = mpatches.Rectangle( [x0 + wpad, y0 + hpad], width - 2 * wpad, height - 2 * hpad, facecolor=orig_handle.color, alpha=orig_handle.alpha, hatch=orig_handle.hatch, edgecolor=edges, transform=handlebox.get_transform(), ) handlebox.add_artist(patch) patches.append(patch) return patches
[docs] def offset_xcentered(n, ax, *, offset_prop=0.05): """Yield ``n`` matplotlib transforms in such a way that the corresponding ``n`` transofrmed x values are centered around the middle. The offset between to consecutive points is ``offset_prop`` in units of the figure dpi scale.""" first_offset = +(n // 2) # http://matplotlib.org/users/transforms_tutorial.html for i in range(n): dx = offset_prop * (i - first_offset) offset = transforms.ScaledTranslation(dx, 0, ax.figure.dpi_scale_trans) offset_transform = ax.transData + offset yield offset_transform
[docs] def centered_range(n, value=0, distance=1): """Generte a range of ``n`` points centered around ``value``, unifirmely sampled at intervals of ``distance``.""" first_offset = +(n / 2) - 0.5 for i in range(n): yield distance * (i - first_offset) + value
[docs] def barplot(values, collabels, datalabels, orientation='auto'): """The barplot as matplotlib should have it. It resizes on overflow. ``values`` should be one or two dimensional and should contain the values for the barplot. ``collabels`` must have as many elements as ``values`` has columns (or total elements if it is one dimensional), and contains the labels for each column in the bar plot. ``datalabels`` should have as many elements as values has rows, and contains the labels for the individual items to be compared. If ``orientation`` is ``"auto"``, the barplot will be horizontal or vertical depending on the number of items. Otherwise, the orientation can ve fixes as ``"horizontal"`` or ``"vertical"``. Parameters ---------- values : array of dimensions *M×N* or *N*. The input data. collabels : Iterable[str] of dimensions N The labels for each of the bars. datalabels : Iterable[str] of dimensions M or 1 The label for each of the datasets to be compared. orientation : {'auto', 'horizontal', 'vertical'}, 'optional' The orientation of the bars. Returns ------- (fig, ax) : tuple a tuple of a matplotlib figure and an axis, like matplotlib.pyplot.subplots. The axis will have a ``_bar_orientation`` attribute that will either be 'horizontal' or 'vertical' and will correspond to the actual orientaion of the plot. Examples -------- >>> import numpy as np >>> from validphys.plotutils import barplot >>> vals = np.random.rand(2,5) >>> collabels = ["A", "B", "C", "D", "e"] >>> fig, ax = barplot(vals, collabels, ['First try', 'Second try']) >>> ax.legend() """ values = np.atleast_2d(values) ntypes, l = values.shape lc = len(collabels) if lc != l: raise ValueError( f"Mismatch between the number of data points ({l}) and " f"the number axis labels ({lc})" ) width = 2 # The tick positions x = np.linspace(0, 1.1 * width * ntypes * l - 1, l) w, h = mpl.rcParams["figure.figsize"] # Rescale if we have too much data rescale = max(1, 1 + (width * l * ntypes - 15) * 0.05) # Rescale if the labels are too long lbrescale = max(1, 1 + 0.04 * (max(len(l) for l in collabels) - 5)) if orientation == 'auto': if l * ntypes > 20: orientation = 'horizontal' else: orientation = 'vertical' if orientation == 'vertical': fig = Figure(figsize=(w * rescale, h * lbrescale)) ax = fig.subplots() barfunc = ax.bar infoaxis = ax.xaxis infolim = ax.set_xlim otheraxis = ax.yaxis rotation = 80 def get_pos(val): if val >= 0: xytext = (0, 5) else: xytext = (0, -5) horizontalalignment = 'center' return {'xytext': xytext, 'horizontalalignment': horizontalalignment} def xytext(x, y): return x, y elif orientation == 'horizontal': fig = Figure(figsize=(w * lbrescale, h * rescale)) ax = fig.subplots() barfunc = ax.barh infoaxis = ax.yaxis infolim = ax.set_ylim otheraxis = ax.xaxis rotation = 10 def get_pos(val): if val >= 0: xytext = (5, 0) horizontalalignment = 'left' else: xytext = (-5, 0) horizontalalignment = 'right' return {'xytext': xytext, 'horizontalalignment': horizontalalignment} def xytext(x, y): return y, x else: raise ValueError("orientation must be one of ('auto', 'horizontal', 'vertical')") infoaxis.set_ticks(x) infoaxis.set_ticklabels(collabels, rotation=rotation) deltas = list(centered_range(ntypes, distance=width)) for row, delta, datalabel in zip(values, deltas, datalabels): thisx = x + delta barfunc(thisx, row, width, label=datalabel) for xp, v in zip(thisx, row): # NaN coords cause error (https://github.com/NNPDF/nnpdf/issues/363) if np.all(np.isfinite([xp, v])): ax.annotate( f'{format_number(v,3)}', xy=xytext(xp, v), textcoords='offset points', size='small', wrap=True, **get_pos(v), ) else: # place label at zero for nan coordinate -> ensure `get_pos` is fed altered coords new_pos = [val if np.isfinite(val) else 0 for val in [xp, v]] ax.annotate( f'{format_number(v,3)}', xy=xytext(*new_pos), textcoords='offset points', size='small', wrap=True, **get_pos(new_pos[0]), ) infolim(x[0] + deltas[0] - width / 2, x[-1] + deltas[-1] + width / 2) otheraxis.set_visible(False) ax.tick_params(length=0) ax.spines['left'].set_color('none') ax.spines['bottom'].set_color('none') ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.grid(False) fig.tight_layout() ax._bar_orientation = orientation return fig, ax
[docs] def plot_horizontal_errorbars(cvs, errors, categorylabels, datalabels=None, xlim=None): """A plots with a list of horizontal errorbars oriented vertically. ``cvs`` and ``errors`` are the central values and errors both of shape `ndatasets x ncategories`, ``cateogorylabels`` are the labels of each element for which errorbars are drawn and ``datalabels`` are the labels of the different datasets that are compared. """ w, h = mpl.rcParams["figure.figsize"] rescale = max(1, 1 + 0.1 * (len(categorylabels) - 7)) fig = Figure(figsize=(w * 1.5, h * rescale)) ax = fig.subplots() if datalabels is None: datalabels = itertools.repeat(None) y = np.arange(len(categorylabels)) ax.yaxis.set_ticks(y) ax.yaxis.set_ticklabels(categorylabels) mi = marker_iter_plot() distance = 0.5 / len(cvs) pos = centered_range(len(cvs), distance=distance) for cv, err, lb, markerspec, shift in zip(cvs, errors, datalabels, mi, pos): ax.errorbar(cv, y + shift, xerr=err, linestyle='none', label=lb, **markerspec) if xlim is None: # Support both single error and up, low. errmat = np.atleast_2d(errors) low = cvs - errmat[0, :] high = cvs + errmat[-1, :] xlim = expand_margin(np.nanpercentile(low, 15), np.nanpercentile(high, 85), 1.5) ax.set_xlim(xlim) ax.set_ylim(-0.5, len(categorylabels) - 0.5) ax.invert_yaxis() ax.grid(axis='y') return fig, ax
[docs] @ax_or_gca def kde_plot(a, height=0.05, ax=None, label=None, color=None, max_marks=100000): """Plot a Kernel Density Estimate of a 1D array, togther with individual occurrences . This plot provides a quick visualizaton of the distribution of one dimensional data in a more complete way than an histogram would. It produces both a `Kernel Density Estimate (KDE) <https://en.wikipedia.org/wiki/Kernel_density_estimation>`_ and individual occurences of the data (`rug plot <https://en.wikipedia.org/wiki/Rug_plot>`_). The KDE uses a Gaussian Kernel with the Silverman rule to select the bandwidth (this is the optimal choice if the input data is Gaussian). The individual ocurrences are displayed as marks along the bottom axis. For performance reasons, and to avoid cluttering the plot, a maximum of ``max_marks`` marks are displayed; if the length of the data is bigger, a random sample of ``max_marks`` is taken. Parameters ---------- a: vector 1D array of observations. height: scalar, optional Height of marks in the rug plot as proportion of the axis height. ax: matplotlib axes, optional Axes to draw plot into; otherwise grabs current axes. label: string, optional The label for the legend (note that you have to generate the legend yourself). color: optional A matplotlib color specification, used for both the KDE and the rugplot. If not given, the next in the underlying axis cycle will be consumed and used. max_marks: integer, optional The maximum number of points that will be displayed individually. Returns ------- ax: matplotlib axes The Axes object with the plot on it, allowing further customization. Example ------- >>> import numpy as np >>> dist = np.random.normal(size=100) >>> ax = kde_plot(dist) """ a = np.asarray(a).ravel() if color is None: color = ax._get_lines.get_next_color() kde_func = stats.gaussian_kde(a, bw_method="silverman") kde_x = np.linspace(*expand_margin(np.min(a), np.max(a), 1.3), 100) ax.plot(kde_x, kde_func(kde_x), label=label, color=color) if len(a) > max_marks: segment_data = np.random.choice(a, max_marks, replace=False) else: segment_data = a # Define segments by a pair of points (data, 0) and (data, height). # Bug in pylint # pylint: disable=too-many-function-args segments = np.c_[ segment_data, np.zeros_like(segment_data), segment_data, np.full_like(segment_data, height) ].reshape(-1, 2, 2) rugs = mcollections.LineCollection( segments, # Make the x coordinate refer to the data but the y (the height # relative to the plot height. # https://matplotlib.org/tutorials/advanced/transforms_tutorial.html?highlight=transforms%20blended_transform_factory#blended-transformations transform=transforms.blended_transform_factory(ax.transData, ax.transAxes), color=color, ) ax.add_collection(rugs) ax.set_ylim(ymin=0) return ax
[docs] def spiderplot(xticks, vals, label, ax): """ Makes a spider/radar plot. xticks: list of names of x tick labels, e.g. datasets vals: list of values to plot corresponding to each xtick label: label for values, e.g. fit name ax: a `PolarAxes` instance """ N = len(xticks) angles = [n / float(N) * 2 * np.pi for n in range(N)] # Add this on so that the plot line connects back to the start angles += angles[:1] vals = list(vals) vals += vals[:1] ax.set_theta_offset(np.pi / 2) ax.set_theta_direction(-1) ax.set_xticks(angles[:-1]) ax.set_xticklabels(xticks, size=8, zorder=6) # Draw ylabels ax.plot(angles, vals, linewidth=2, label=label, linestyle="solid", zorder=1) ax.fill(angles, vals, alpha=0.4, zorder=1) ax.grid(linewidth=1) ax.legend(fontsize=12) return ax