Source code for validphys.pdfbases

"""
pdfbases.py

This holds the concrete labels data relative to the PDF bases,
as declaratively as possible.
"""

import abc
import copy
import functools
import inspect

import numpy as np

from reportengine.checks import CheckError
from validphys.gridvalues import central_grid_values, grid_values

# fmt: off
#This mapping maps the keys passed to LHAPDF (PDG codes) to nice LaTeX labels.
PDG_PARTONS = dict((
        (-6,  r'\bar{t}'),
        (-5 , r"\bar{b}"),
        (-4 , r"\bar{c}"),
        (-3 , r"\bar{s}"),
        (-2 , r"\bar{u}"),
        (-1 , r"\bar{d}"),
        (0 , r"g"),
        (1 , r"d"),
        (2 , r"u"),
        (3 , r"s"),
        (4 , r"c"),
        (5 , r"b"),
        (6 , r"t"),
        (22 , r"\gamma"),
        (21 , r"g"),
    ))

PIDS_DICT = {
        -6: "TBAR",
        -5: "BBAR",
        -4: "CBAR",
        -3: "SBAR",
        -2: "UBAR",
        -1: "DBAR",
        21: "GLUON",
        1: "D",
        2: "U",
        3: "S",
        4: "C",
        5: "B",
        6: "T",
        22: "PHT",
    }

# Canonical ordering of PDG codes (so flavour basis)
ALL_FLAVOURS = (-6, -5, -4, -3, -2, -1, 21, 1, 2, 3, 4, 5, 6, 22)
DEFAULT_FLARR = (-3,-2,-1,0,1,2,3,4)

[docs] def pdg_id_to_canonical_index(flindex): """Given an LHAPDF id, return its index in the ALL_FLAVOURS list.""" if flindex == 0: return ALL_FLAVOURS.index(21) return ALL_FLAVOURS.index(flindex)
[docs] def list_bases(): """ List available PDF bases """ import validphys.pdfbases as thismodule return dict(inspect.getmembers(thismodule, lambda x: isinstance(x, thismodule.Basis)))
[docs] def check_basis(basis, flavours): """ Check to verify a given basis and set of flavours. Returns a dictionary with the relevant instance of the basis class and flavour specification """ if isinstance(basis, str): bases = list_bases() try: basis = bases[basis] except KeyError: raise CheckError(f"Unknown basis '{basis}'", basis, bases) if flavours is None: flavours = basis.default_elements try: flavours = basis.to_known_elements(flavours) except UnknownElement as e: bad = e.args[0] raise CheckError(f"Unknown basis element '{bad}'", str(bad), alternatives=basis.indexes, display_alternatives='all') from e return {'basis':basis, 'flavours':flavours}
#These are various ways to refering to the PDG partons with nicer text labels. PDG_ALIASES = { r'\bar{t}': -6, 'tbar' : -6, '\\bar{b}': -5, 'bbar' : -5, '\\bar{c}': -4, 'cbar' : -4, '\\bar{d}': -1, 'dbar' : -1, '\\bar{s}': -3, 'sbar' : -3, '\\bar{u}': -2, 'ubar' : -2, '\\gamma': 22, 'photon': 22, 't': 6, 'top': 6, 'b': 5, 'bottom': 5, 'c': 4, 'charm': 4, 'd': 1, 'down': 1, 'g': 21, 'gluon': 21, 's': 3, 'strange': 3, 'u': 2, 'up': 2, 0 : 21, }
[docs] def parse_flarr(flarr): """Parse a free form list into a list of PDG parton indexes (that may contain indexes or values from `PDF_ALIASES`)""" out = [] for elem in flarr: msg = "Unknown parton '%s'" % elem try: num = int(elem) except (ValueError, TypeError): if elem in PDG_ALIASES: out.append(PDG_ALIASES[elem]) else: raise ValueError(msg) else: if num in PDG_PARTONS: out.append(num) else: raise ValueError(msg) return out
[docs] class UnknownElement(KeyError): pass
[docs] class Basis(abc.ABC): """A Basis maps a set of PDF flavours (typically as given by :ref:`LHAPDF <lhapdf>`) to functions thereof. This abstract class provides functionalities to manage labels (used for plotting) and defaults, while the concrete implementation of the transformations is handled by the subclasses (by implementing the :py:meth:`validphys.pdfbases.Basis.apply_grid_values` method). The high level :py:meth:`validphys.pdfbases.Basis.grid_values` and :py:meth:`validphys.pdfbases.Basis.central_grid_values` methods then provide convenient functionality to work with transformations. Attributes ---------- labels: list A list of strings representing the labels of each possible transformation, in order. aliases: dict, optional A mapping from strings to labels appearing in ``labels``, specifying equivalent ways to enter elements in the user interface. default_elements: list, optional A list of the labels to be computed by default when no subset of elements is specified. If not given it is assumed to be the same as ``labels``. element_representations: dict, optional A mapping from strings to labels indicating the preferred string representation of the provided elements (to be used in plotting). If this parameter is not given or the element is not in the mapping, the label itself is used. It may be convenient to set this when heavy use of LaTeX is desired. """ def __init__(self, labels, *, aliases=None, default_elements=None, element_representations=None): self.labels = labels #self._known_flavours = ALL_FLAVOURS[] if default_elements is None: default_elements = labels self.default_elements = default_elements if element_representations is None: element_representations = {} self.element_representations = element_representations indexes = {lb:i for i,lb in enumerate(labels)} if aliases: indexes.update({alias:indexes[alias_label] for alias,alias_label in aliases.items()}) else: aliases = [] self.aliases = aliases self.indexes = indexes
[docs] def elementlabel(self, element): """Return the printable representation of a given element of this basis.""" if element in self.aliases: element = self.aliases[element] if element in self.element_representations: return self.element_representations[element] elif element in self.labels: return element raise UnknownElement(element)
[docs] def has_element(self, element): """ Return true if basis has knowledge of the given element """ try: self.elementlabel(element) return True except UnknownElement: return False
def _to_indexes(self, basis_arr): """Convert a list of elements of the basis to indexes of the (rows of the) transformation matrix.""" return [self.indexes[k] for k in basis_arr]
[docs] def to_known_elements(self, vmat): """Transform the list of aliases into an array of known labels. Raise `UnknownElement` on failure.""" try: return np.asanyarray(self.labels)[self._to_indexes(vmat)] except KeyError as e: raise UnknownElement(*e.args) from e
[docs] @abc.abstractmethod def apply_grid_values(self, func, vmat, xmat, qmat): """Abstract method to implement basis transformations. It outsources the filling of the grid in the flavour basis to ``func`` and implements the transformation from the flavour basis to the basis. Methods like :py:meth:`validphys.pdfbases.Basis.grid_values` and :py:meth:`validphys.pdfbases.Basis.central_grid_values` are derived from this method by selecting the appropriate ``func``. It should return an array indexed as grid_values[N][flavour][x][Q] Parameters ---------- func: callable A function that fills the grid defined by the rest of the input with elements in the flavour basis. vmat: iterable A list of flavour aliases valid for the basis. xmat: iterable A list of x values qmat: iterable A list of values in Q, expressed in GeV. """ ...
[docs] def grid_values(self, pdf, vmat, xmat, qmat): """Like :py:func:`validphys.gridvalues.grid_values`, but taking and returning `vmat` in terms of the vectors in this base. Parameters ---------- pdf: PDF Any PDF set vmat: iterable A list of flavour aliases valid for the basis. xmat: iterable A list of x values qmat: iterable A list of values in Q, expressed in GeV. Returns ------- grid: np.ndarray A 4-dimension array with the PDF values at the input parameters for each replica. The return value is indexed as follows: grid_values[replica][flavour][x][Q] Examples -------- Compute the median ratio over replicas between singlet and gluon for a fixed point in x and a range of values in Q:: >>> import numpy as np >>> from validphys.loader import Loader >>> from validphys.pdfbases import evolution >>> gv = evolution.grid_values(Loader().check_pdf("NNPDF31_nnlo_as_0118"), ["singlet", "gluon"], [0.01], [2,20,200]) >>> np.median(gv[:,0,...]/gv[:,1,...], axis=0) array([[0.56694959, 0.53782002, 0.60348812]]) """ func = functools.partial(grid_values, pdf) return self.apply_grid_values(func, vmat, xmat, qmat)
[docs] def central_grid_values(self, pdf, vmat, xmat, qmat): """Same as :py:meth:`Basis.grid_values` but returning information on the central member of the PDF set.""" func = functools.partial(central_grid_values, pdf) return self.apply_grid_values(func, vmat, xmat, qmat)
[docs] class LinearBasis(Basis): """A basis that implements a linear transformation of flavours. Attributes ---------- from_flavour_mat: np.ndarray A matrix that rotates the flavour basis into this basis. """ def __init__(self, labels, from_flavour_mat, *args, **kwargs): """ `flavour_representantion` is a mapping with the printable strings of the elements (in case it doesn't match `labels`). """ self.from_flavour_mat = from_flavour_mat super().__init__(labels, *args, **kwargs) """ NOTE: At the moment, we don't need the inverse functionality, namely transforming from basis to flavour. But if we do, it should be computed using arbitrary precision inverses with simpy (simpy.Matrix.pinv). Of course, other possible strategies invclude writing the inverse transformations by hand or using the SVD but not the inverse directly. instead of numpy. With numpy it's too difficult to get exact cancelations and the like. In particular, make sure you pass a test like: from hypothesis import given from hypothesis.strategies import floats import hypothesis.extra.numpy as npmats import numpy as np from validphys.pdfbases import ALL_FLAVOURS, evolution flmats = npmats.arrays(float, len(ALL_FLAVOURS), floats(allow_nan=False, allow_infinity=False)) @given(inp=flamts) def test_evolution_transformation(inp): assert np.allclose(evolution.to_flavour(evolution.from_flavour(inp)),inp, atol=1e-5, rtol=1e-2) for some reasonable tolerances. In summary, the following code works but with not so good precision: ___________________________ def to_flavour(self, basis_arr): return self.to_flavour_mat @ basis_arr @property def from_flavour_mat(self): if self._from_flavour_mat is None: mat = la.pinv(self.to_flavour_mat, rcond=1e-3) #TODO: This is a rather ugly hack. sympy can do pseudoinverses #with exact arithmetic so maybe we should just use that if we add #it as a dependency. Or perhaps #define the inverse transofrms by hand. mat[np.abs(mat)<1e-15]=0 self._from_flavour_mat = mat return self._from_flavour_mat def from_flavour(self, flavour_arr): return self.from_flavour_mat @ flavour_arr def to_other_base(self, basis_arr, other_base): return other_base.from_flavour_mat @ (self.to_flavour_mat @ basis_arr) _____________ There is also the question of the interface, since we almost never want all flavours. """ def _flaray_from_flindexes(self, flinds): """Convert a list of flavor basis indexes to PDG codes to pass to LHAPDF""" return np.asarray(ALL_FLAVOURS)[flinds] def _flmask_from_base_indexes(self, inds): """Return the flavour indexes of the transformation matrix (i.e. columns) that are needed to compute `inds` (indexes of the rows, possibly obtained with `_to_indexes`).""" return np.count_nonzero(self.from_flavour_mat[inds, :], axis=0) > 0
[docs] def apply_grid_values(self, func, vmat, xmat, qmat): #Indexes in the transformation from the "free form" inpt inds = self._to_indexes(vmat) #Indexes in flavour basis required to compute these elements flinds = self._flmask_from_base_indexes(inds) #The submatrix of the transformation matrix index = np.ix_(inds, flinds) transformation = self.from_flavour_mat[index] #The PDG codes for LHAPDF flmat = self._flaray_from_flindexes(flinds) gv = func(flmat, xmat, qmat) #Matrix product along the flavour axis rotated_gv = np.einsum('bc,acde->abde', transformation, gv) return rotated_gv
[docs] @classmethod def from_mapping(cls, mapping, *, aliases=None, default_elements=None): """Construct a basus from a mapping of the form ``{label:{pdf_flavour:coefficient}}``.""" arr = np.zeros(shape=(len(mapping), len(ALL_FLAVOURS))) labels = tuple(mapping) for i, coefs in enumerate(mapping.values()): indexes = [pdg_id_to_canonical_index(val) for val in parse_flarr(coefs.keys())] values = coefs.values() arr[i, indexes] = list(values) return cls(labels, arr, aliases=aliases, default_elements=default_elements)
[docs] class ScalarFunctionTransformation(Basis): """A basis that transforms the flavour basis into a single element given by ``transform_func``. Optional keyword arguments are passed to the constructor of :py:class:`validphys.pdfbases.Basis`. Attributes ---------- transform_func: callable A callable with the signature ``transform_func(func, xmat, qmat)`` that fills the grid in :math:`x` and :math:`Q` using ``func`` and returns a grid with a single basis element. """ def __init__(self, transform_func, *args, **kwargs): self.transform_func = transform_func super().__init__(*args, **kwargs)
[docs] def apply_grid_values(self, func, vmat, xmat, qmat): return self.transform_func(func, xmat, qmat)
[docs] def scalar_function_transformation(label, *args, **kwargs): """Convenience decorator factory to produce a :py:class:`validphys.pdfbases.ScalarFunctionTransformation` basis from a function. Parameters ---------- label: str The single label of the element produced by the function transformation. Notes ----- Optional keyword arguments are passed to the constructor of :py:class:`validphys.pdfbases.ScalarFunctionTransformation`. Returns ------- decorator: callable A decorator that can be applied to a suitable transformation function. """ def f_(transform_func): return ScalarFunctionTransformation(transform_func, [label], *args, **kwargs) return f_
flavour = LinearBasis(ALL_FLAVOURS, np.eye(len(ALL_FLAVOURS)), aliases=PDG_ALIASES, default_elements = DEFAULT_FLARR, element_representations=PDG_PARTONS ) # dicts are ordered in python 3.6+... code shouldn't break if they aren't though #see Eqs.(56),(57) https://arxiv.org/pdf/0808.1231.pdf for evolution basis definition evolution = LinearBasis.from_mapping({ r'\Sigma' : {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': 1, 'sbar': 1, 'c': 1, 'cbar': 1 ,'b':1, 'bbar': 1, 't': 1, 'tbar': 1}, 'V' : {'u': 1, 'ubar':-1, 'd': 1, 'dbar':-1, 's': 1, 'sbar':-1, 'c': 1, 'cbar':-1 ,'b':1, 'bbar':-1, 't': 1, 'tbar':-1}, 'T3' : {'u': 1, 'ubar': 1, 'd':-1, 'dbar':-1}, 'V3' : {'u': 1, 'ubar':-1, 'd':-1, 'dbar': 1}, 'T8' : {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's':-2, 'sbar':-2}, 'V8' : {'u': 1, 'ubar':-1, 'd': 1, 'dbar':-1, 's':-2, 'sbar':+2}, 'T15' : {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': 1, 'sbar': 1, 'c':-3, 'cbar':-3}, 'V15' : {'u': 1, 'ubar':-1, 'd': 1, 'dbar':-1, 's': 1, 'sbar':-1, 'c':-3, 'cbar':+3}, 'T24' : {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': 1, 'sbar': 1, 'c': 1, 'cbar': 1, 'b':-4, 'bbar':-4}, 'V24' : {'u': 1, 'ubar':-1, 'd': 1, 'dbar':-1, 's': 1, 'sbar':-1, 'c': 1, 'cbar':-1, 'b':-4, 'bbar':+4}, 'T35' : {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': 1, 'sbar': 1, 'c': 1, 'cbar': 1, 'b': 1, 'bbar': 1, 't':-5, 'tbar':-5}, 'V35' : {'u': 1, 'ubar':-1, 'd': 1, 'dbar':-1, 's': 1, 'sbar':-1, 'c': 1, 'cbar':-1, 'b': 1, 'bbar':-1, 't':-5, 'tbar':+5}, 'g' : {'g':1}, 'photon' : {'photon':1}, }, aliases = {'gluon':'g', 'singlet': r'\Sigma', 'sng': r'\Sigma', 'sigma': r'\Sigma', 'v': 'V', 'v3': 'V3', 'v8': 'V8', 't3': 'T3', 't8': 'T8', 't15': 'T15', 'v15': 'V15', 't24': 'T24', 'v24': 'V24', 't35': 'T35', 'v35': 'V35', 'photon': 'photon',}, default_elements=(r'\Sigma', 'V', 'T3', 'V3', 'T8', 'V8', 'T15', 'gluon', ) ) EVOL = evolution LUX = copy.deepcopy(evolution) LUX.default_elements = (r'\Sigma', 'V', 'T3', 'V3', 'T8', 'V8', 'T15', 'V15', 'gluon', 'photon') CCBAR_ASYMM = copy.deepcopy(evolution) CCBAR_ASYMM.default_elements = (r'\Sigma', 'V', 'T3', 'V3', 'T8', 'V8', 'T15', 'gluon', 'V15') # Basis that is ordered exactly in the same way as in FKs FK_BASIS = copy.deepcopy(evolution) FK_BASIS.default_elements = ('photon', r'\Sigma', 'gluon', 'V', 'V3', 'V8', 'V15', 'V24', 'V35', 'T3', 'T8', 'T15', 'T24', 'T35') PDF4LHC20 = LinearBasis.from_mapping({ r'\Sigma': { 'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': 1, 'sbar': 1, 'c': 1, 'cbar': 1, 'b': 1, 'bbar': 1, 't': 1, 'tbar': 1}, 'g': {'g': 1}, 'V': { 'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': 1, 'sbar': -1, 'c': 1, 'cbar': -1, 'b': 1, 'bbar': -1, 't': 1, 'tbar': -1}, 'V3': {'u': 1, 'ubar': -1, 'd': -1, 'dbar': 1}, 'T3': {'u': 1, 'ubar': 1, 'd': -1, 'dbar': -1}, 'T8': {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': -2, 'sbar': -2}, 'photon': {'photon': 1}, }, aliases = {'gluon':'g', 'singlet': r'\Sigma', 'sng': r'\Sigma', 'sigma': r'\Sigma', 'v': 'V', 'v3': 'V3', 't3': 'T3', 't8': 'T8'}, default_elements=(r'\Sigma', 'gluon', 'V', 'V3', 'T3', 'T8', )) NN31IC = LinearBasis.from_mapping( { r'\Sigma': { 'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': 1, 'sbar': 1, 'c': 1, 'cbar': 1, 'b': 1, 'bbar': 1, 't': 1, 'tbar': 1}, 'g': {'g': 1}, 'V': { 'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': 1, 'sbar': -1, 'c': 1, 'cbar': -1, 'b': 1, 'bbar': -1, 't': 1, 'tbar': -1}, 'V3': {'u': 1, 'ubar': -1, 'd': -1, 'dbar': 1}, 'V8': {'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': -2, 'sbar': +2}, 'T3': {'u': 1, 'ubar': 1, 'd': -1, 'dbar': -1}, 'T8': {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': -2, 'sbar': -2}, r'c^+': {'c': 1, 'cbar': 1}, 'photon': {'photon': 1}, }, aliases={ 'gluon': 'g', 'singlet': r'\Sigma', 'sng': r'\Sigma', 'sigma': r'\Sigma', 'cp': r'c^+', 'v': 'V', 'v3': 'V3', 'v8': 'V8', 't3': 'T3', 't8': 'T8'}, default_elements=(r'\Sigma', 'gluon', 'V', 'V3', 'V8', 'T3', 'T8', r'c^+', )) NN31PC = LinearBasis.from_mapping( { r'\Sigma': { 'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': 1, 'sbar': 1, 'c': 1, 'cbar': 1, 'b': 1, 'bbar': 1, 't': 1, 'tbar': 1}, 'g': {'g': 1}, 'V': { 'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': 1, 'sbar': -1, 'c': 1, 'cbar': -1, 'b': 1, 'bbar': -1, 't': 1, 'tbar': -1}, 'V3': {'u': 1, 'ubar': -1, 'd': -1, 'dbar': 1}, 'V8': {'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': -2, 'sbar': +2}, 'T3': {'u': 1, 'ubar': 1, 'd': -1, 'dbar': -1}, 'T8': {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': -2, 'sbar': -2}, 'photon': {'photon': 1}, }, aliases={ 'gluon': 'g', 'singlet': r'\Sigma', 'sng': r'\Sigma', 'sigma': r'\Sigma', 'v': 'V', 'v3': 'V3', 'v8': 'V8', 't3': 'T3', 't8': 'T8'}, default_elements=(r'\Sigma', 'gluon', 'V', 'V3', 'V8', 'T3', 'T8')) FLAVOUR = LinearBasis.from_mapping( { 'u': {'u': 1}, 'ubar': {'ubar': 1}, 'd': {'d': 1}, 'dbar': {'dbar': 1}, 's': {'s': 1}, 'sbar': {'sbar': 1}, 'c': {'c': 1}, 'cbar': {'cbar': 1}, 'g': {'g': 1}, 'photon': {'photon':1}, }, default_elements=('u', 'ubar', 'd', 'dbar', 's', 'sbar', 'c', 'g', )) FLAVOURPC = LinearBasis.from_mapping( { 'u': {'u': 1}, 'ubar': {'ubar': 1}, 'd': {'d': 1}, 'dbar': {'dbar': 1}, 's': {'s': 1}, 'sbar': {'sbar': 1}, 'cbar': {'cbar': 1}, 'g': {'g': 1}, 'photon': {'photon':1}, }, default_elements=('u', 'ubar', 'd', 'dbar', 's', 'sbar', 'g', )) CCBAR_ASYMM_FLAVOUR = copy.deepcopy(FLAVOUR) CCBAR_ASYMM_FLAVOUR.default_elements=('u', 'ubar', 'd', 'dbar', 's', 'sbar', 'c', 'cbar', 'g') LUX_FLAVOUR = copy.deepcopy(FLAVOUR) LUX_FLAVOUR.default_elements=('u', 'ubar', 'd', 'dbar', 's', 'sbar', 'c', 'cbar', 'g', 'photon') POLARIZED_EVOL = LinearBasis.from_mapping({ r'\Delta \Sigma' : {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': 1, 'sbar': 1}, r'\Delta T3' : {'u': 1, 'ubar': 1, 'd':-1, 'dbar':-1}, r'\Delta T8' : {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's':-2, 'sbar':-2}, r'\Delta g' : {'g':1}, r'(\Delta \Sigma + \Delta T8)/4' : {'u': 1/2, 'ubar': 1/2, 'd': 1/2, 'dbar': 1/2, 's':-1/4, 'sbar':-1/4}, }, aliases = {'g':r'\Delta g', 'gluon':r'\Delta g', r'singlet': r'\Delta \Sigma', 'sng': r'\Delta \Sigma', 'sigma': r'\Delta \Sigma', 't3': r'\Delta T3', 't8': r'\Delta T8', 'T3': r'\Delta T3', 'T8': r'\Delta T8','sigma_t8': r'(\Delta \Sigma + \Delta T8)/4'}, default_elements=(r'sigma', 't3', 't8', 'gluon', 'sigma_t8', ) ) POLARIZED_EVOL_CMP = LinearBasis.from_mapping({ r'\Delta \Sigma' : {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': 1, 'sbar': 1}, r'\Delta T3' : {'u': 1, 'ubar': 1, 'd':-1, 'dbar':-1}, r'\Delta T8' : {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's':-2, 'sbar':-2}, r'\Delta g' : {'g':1}, r'\Delta V' : {'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1}, r'\Delta V3' : {'u': 1, 'ubar': -1, 'd': -1, 'dbar': 1}, r'(\Delta \Sigma + \Delta T8)/4' : {'u': 1/2, 'ubar': 1/2, 'd': 1/2, 'dbar': 1/2, 's':-1/4, 'sbar':-1/4}, }, aliases = {'g':r'\Delta g', 'gluon':r'\Delta g', r'singlet': r'\Delta \Sigma', 'sng': r'\Delta \Sigma', 'sigma': r'\Delta \Sigma', 't3': r'\Delta T3', 't8': r'\Delta T8', 'T3': r'\Delta T3', 'T8': r'\Delta T8','sigma_t8': r'(\Delta \Sigma + \Delta T8)/4', 'V3': r'\Delta V3', 'v3': r'\Delta V3', 'v': r'\Delta V', 'V': r'\Delta V', }, default_elements=(r'sigma', 't3', 't8', 'v', 'v3', 'gluon', 'sigma_t8', ) ) LUX_FLAVOURPC = copy.deepcopy(FLAVOURPC) LUX_FLAVOURPC.default_elements = ('u', 'ubar', 'd', 'dbar', 's', 'sbar', 'g', 'photon') POLARIZED_FLAVOURPC = LinearBasis.from_mapping( { r'\Delta u': {'u': 1}, r'\Delta \bar{u}': {'ubar': 1}, r'\Delta d': {'d': 1}, r'\Delta \bar{d}': {'dbar': 1}, r'\Delta s': {'s': 1}, r'\Delta \bar{s}': {'sbar': 1}, r'\Delta c': {'c': 1}, r'\Delta \bar{c}': {'cbar': 1}, r'\Delta g': {'g': 1}, }, default_elements=('u', 'ubar', 'd', 'dbar', 's', 'sbar', 'c', 'cbar', 'g', ), aliases = {'u': r'\Delta u', 'ubar': r'\Delta \bar{u}', 'd': r'\Delta d', 'dbar': r'\Delta \bar{d}', 's': r'\Delta s', 'sbar': r'\Delta \bar{s}', 'c': r'\Delta c', 'cbar': r'\Delta \bar{c}', 'g': r'\Delta g',} ) pdg = LinearBasis.from_mapping({ 'g/10': {'g':0.1}, 'u_{v}': {'u':1, 'ubar':-1}, 'd_{v}': {'d':1, 'dbar': -1}, 's': {'s':1}, r'\bar{u}': {'ubar':1}, r'\bar{d}': {'dbar':1}, 'c': {'c':1}, }) pdg_pol = LinearBasis.from_mapping({ r'\Delta g': {'g':1}, r'\Delta u_{v}': {'u':1, 'ubar':-1}, r'\Delta d_{v}': {'d':1, 'dbar': -1}, r'\Delta s': {'s':1}, r'\Delta\bar{u}': {'ubar':1}, r'\Delta\bar{d}': {'dbar':1}, r'\Delta c': {'c':1}, }) @scalar_function_transformation(label="u_V") def u_valence(func, xmat, qmat): gv = func([2, -2], xmat, qmat) u = gv[:, [0], ...] ubar = gv[:, [1], ...] return u - ubar @scalar_function_transformation(label="d_V") def d_valence(func, xmat, qmat): gv = func([1, -1], xmat, qmat) d = gv[:, [0], ...] dbar = gv[:, [1], ...] return d - dbar @scalar_function_transformation(label="S") def total_sea(func, xmat, qmat): gv = func([3, -2, -1, -3], xmat, qmat) s = gv[:, [0], ...] ubar = gv[:, [1], ...] dbar = gv[:, [2], ...] sbar = gv[:, [3], ...] return 2.*(ubar + dbar) + s + sbar @scalar_function_transformation(label="u/d") def ud_ratio(func, xmat, qmat): gv = func([2, 1], xmat, qmat) num = gv[:, [0], ...] den = gv[:, [1], ...] return num / den @scalar_function_transformation(label="d/u") def du_ratio(func, xmat, qmat): gv = func([1, 2], xmat, qmat) num = gv[:, [0], ...] den = gv[:, [1], ...] return num / den @scalar_function_transformation(label=r"\bar{d}/\bar{u}") def dbarubar_ratio(func, xmat, qmat): gv = func([-1, -2], xmat, qmat) num = gv[:, [0], ...] den = gv[:, [1], ...] return num / den @scalar_function_transformation(label=r"c^+") def cplus(func, xmat, qmat): gv = func([-4, 4], xmat, qmat) cbar = gv[:, [0], ...] c = gv[:, [1], ...] return c + cbar @scalar_function_transformation(label=r"c^-") def cminus(func, xmat, qmat): gv = func([-4, 4], xmat, qmat) cbar = gv[:, [0], ...] c = gv[:, [1], ...] return c - cbar @scalar_function_transformation(label=r"d^+") def dplus(func, xmat, qmat): gv = func([1, -1], xmat, qmat) d = gv[:, [0], ...] dbar = gv[:, [1], ...] return d + dbar @scalar_function_transformation(label=r"u^+") def uplus(func, xmat, qmat): gv = func([2, -2], xmat, qmat) u = gv[:, [0], ...] ubar = gv[:, [1], ...] return u + ubar @scalar_function_transformation(label=r"g") def giso(func, xmat, qmat): gv = func([0], xmat, qmat) return gv[:, [0], ...] @scalar_function_transformation(label=r"s^+") def splus(func, xmat, qmat): gv = func([3, -3], xmat, qmat) s = gv[:, [0], ...] sbar = gv[:, [1], ...] return s + sbar @scalar_function_transformation(label="Rs", element_representations={"Rs": "R_{s}"}) def strange_fraction(func, xmat, qmat): gv = func([-3, 3, -2, -1], xmat, qmat) sbar, s, ubar, dbar = (gv[:, [i], ...] for i in range(4)) return (sbar + s) / (ubar + dbar)
[docs] def fitbasis_to_NN31IC(flav_info, fitbasis): """Return a rotation matrix R_{ij} which takes from one of the possible fitting basis (evolution, NN31IC, FLAVOUR) to the NN31IC basis, (sigma, g, v, v3, v8, t3, t8, cp), corresponding to the one used in NNPDF31. Denoting the rotation matrix as R_{ij} i is the flavour index and j is the evolution index. The evolution basis (NN31IC) is defined as cp = c + cbar = 2c and sigma = u + ubar + d + dbar + s + sbar + cp v = u - ubar + d - dbar + s - sbar + c - cbar v3 = u - ubar - d + dbar v8 = u - ubar + d - dbar - 2*s + 2*sbar t3 = u + ubar - d - dbar t8 = u + ubar + d + dbar - 2*s - 2*sbar If the input is already in the evolution basis it returns the identity. Parameters ---------- flav_info: dict dictionary containing the information about each PDF (basis dictionary in the runcard) fitbasis: str name of the fitting basis Returns ------- mat.transpose(): numpy matrix matrix performing the change of basis from fitbasis to NN31IC """ if fitbasis == 'NN31IC': sng = {'sng': 1, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 'cp': 0, 'g': 0 } v = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 'cp': 0, 'g': 0 } v3 = {'sng': 0, 'v': 0, 'v3': 1, 'v8': 0, 't3': 0, 't8': 0, 'cp': 0, 'g': 0 } v8 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 1, 't3': 0, 't8': 0, 'cp': 0, 'g': 0 } t3 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 1, 't8': 0, 'cp': 0, 'g': 0 } t8 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 1, 'cp': 0, 'g': 0 } cp = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 'cp': 1, 'g': 0 } g = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 'cp': 0, 'g': 1 } v15 = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 'cp': 0, 'g': 0 } elif fitbasis == 'NN31PC': sng = {'sng': 1, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 'g': 0 } v = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 'g': 0 } v3 = {'sng': 0, 'v': 0, 'v3': 1, 'v8': 0, 't3': 0, 't8': 0, 'g': 0 } v8 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 1, 't3': 0, 't8': 0, 'g': 0 } t3 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 1, 't8': 0, 'g': 0 } t8 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 1, 'g': 0 } cp = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 'g': 0 } g = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 'g': 1 } v15 = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0} elif fitbasis == 'FLAVOUR': sng = {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': 1, 'sbar': 1, 'c': 2, 'g': 0 } v = {'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': 1, 'sbar': -1, 'c': 0, 'g': 0 } v3 = {'u': 1, 'ubar': -1, 'd': -1, 'dbar': 1, 's': 0, 'sbar': 0, 'c': 0, 'g': 0 } v8 = {'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': -2, 'sbar': 2, 'c': 0, 'g': 0 } t3 = {'u': 1, 'ubar': 1, 'd': -1, 'dbar': -1, 's': 0, 'sbar': 0, 'c': 0, 'g': 0 } t8 = {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': -2, 'sbar': -2, 'c': 0, 'g': 0 } cp = {'u': 0, 'ubar': 0, 'd': 0, 'dbar': 0, 's': 0, 'sbar': 0, 'c': 2, 'g': 0 } g = {'u': 0, 'ubar': 0, 'd': 0, 'dbar': 0, 's': 0, 'sbar': 0, 'c': 0, 'g': 1 } v15 = {'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': 1, 'sbar': -1, 'c': 0, 'g': 0 } elif fitbasis == 'FLAVOURPC': sng = {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': 1, 'sbar': 1, 'c': 0, 'g': 0 } v = {'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': 1, 'sbar': -1, 'c': 0, 'g': 0 } v3 = {'u': 1, 'ubar': -1, 'd': -1, 'dbar': 1, 's': 0, 'sbar': 0, 'c': 0, 'g': 0 } v8 = {'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': -2, 'sbar': 2, 'c': 0, 'g': 0 } t3 = {'u': 1, 'ubar': 1, 'd': -1, 'dbar': -1, 's': 0, 'sbar': 0, 'c': 0, 'g': 0 } t8 = {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': -2, 'sbar': -2, 'c': 0, 'g': 0 } cp = {'u': 0, 'ubar': 0, 'd': 0, 'dbar': 0, 's': 0, 'sbar': 0, 'c': 0, 'g': 0 } g = {'u': 0, 'ubar': 0, 'd': 0, 'dbar': 0, 's': 0, 'sbar': 0, 'c': 0, 'g': 1 } v15 = {'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': 1, 'sbar': -1, 'c': 0, 'g': 0 } elif fitbasis == 'EVOL' or fitbasis == 'evolution': sng = {'sng': 1, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } v = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } v3 = {'sng': 0, 'v': 0, 'v3': 1, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } v8 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 1, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } t3 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 1, 't8': 0, 't15': 0, 'g': 0 } t8 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 1, 't15': 0, 'g': 0 } cp = {'sng': 0.25, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': -0.25, 'g': 0 } g = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 1 } v15 = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } elif fitbasis == 'PDF4LHC20': sng = {'sng': 1, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } v = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } v3 = {'sng': 0, 'v': 0, 'v3': 1, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } v8 = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } t3 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 1, 't8': 0, 't15': 0, 'g': 0 } t8 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 1, 't15': 0, 'g': 0 } cp = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } g = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 1 } v15 = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } elif fitbasis == "CCBAR_ASYMM": sng = {'sng': 1, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0, 'v15': 0 } v = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0, 'v15': 0 } v3 = {'sng': 0, 'v': 0, 'v3': 1, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0, 'v15': 0 } v8 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 1, 't3': 0, 't8': 0, 't15': 0, 'g': 0, 'v15': 0 } t3 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 1, 't8': 0, 't15': 0, 'g': 0, 'v15': 0 } t8 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 1, 't15': 0, 'g': 0, 'v15': 0 } cp = {'sng': 0.25, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': -0.25, 'g': 0, 'v15': 0 } g = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 1, 'v15': 0 } v15 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0, 'v15': 1 } elif fitbasis == 'CCBAR_ASYMM_FLAVOUR': sng = {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': 1, 'sbar': 1, 'c': 1, 'cbar': 1, 'g': 0 } v = {'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': 1, 'sbar': -1, 'c': 1, 'cbar': -1, 'g': 0 } v3 = {'u': 1, 'ubar': -1, 'd': -1, 'dbar': 1, 's': 0, 'sbar': 0, 'c': 0, 'cbar': 0, 'g': 0 } v8 = {'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': -2, 'sbar': 2, 'c': 0, 'cbar': 0, 'g': 0 } t3 = {'u': 1, 'ubar': 1, 'd': -1, 'dbar': -1, 's': 0, 'sbar': 0, 'c': 0, 'cbar': 0, 'g': 0 } t8 = {'u': 1, 'ubar': 1, 'd': 1, 'dbar': 1, 's': -2, 'sbar': -2, 'c': 0, 'cbar': 0, 'g': 0 } cp = {'u': 0, 'ubar': 0, 'd': 0, 'dbar': 0, 's': 0, 'sbar': 0, 'c': 1, 'cbar': 1, 'g': 0 } g = {'u': 0, 'ubar': 0, 'd': 0, 'dbar': 0, 's': 0, 'sbar': 0, 'c': 0, 'cbar': 0, 'g': 1 } v15 = {'u': 1, 'ubar': -1, 'd': 1, 'dbar': -1, 's': 1, 'sbar': -1, 'c': -3, 'cbar': 3, 'g': 0 } elif fitbasis == 'POLARIZED_EVOL' or fitbasis == "POLARIZED_EVOL_CMP": # With Perturbative Charm sng = {'sng': 1, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } v = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } v3 = {'sng': 0, 'v': 0, 'v3': 1, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } v8 = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } t3 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 1, 't8': 0, 't15': 0, 'g': 0 } t8 = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 1, 't15': 0, 'g': 0 } cp = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } g = {'sng': 0, 'v': 0, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 1 } v15 = {'sng': 0, 'v': 1, 'v3': 0, 'v8': 0, 't3': 0, 't8': 0, 't15': 0, 'g': 0 } flist = [sng, g, v, v3, v8, t3, t8, cp, v15] mat = [] for f in flist: for flav_dict in flav_info: flav_name = flav_dict["fl"] mat.append(f[flav_name]) nflavs = len(flav_info) # Return the transpose of the matrix, to have the first index referring to flavour return np.asarray(mat).reshape(9, nflavs).T