Source code for validphys.paramfits.config

"""
Configuration class for the paramfits module
"""
import re
from collections.abc import Mapping, Sequence

from reportengine.configparser import Config, ConfigError, element_of

from validphys import tableloader, utils
from validphys.loader import LoaderError

[docs] class ParamfitsConfig(Config): def _get_table(self, loader_func, fname, config_rel_path): #TODO: This is here because I am extremely unconvinced it is the #right interface. There should be something more specific at the #reportengine level. There is some undeniable ugliness in referencing #self.loader, which does not exist, but it is still better than #creating a base class in an isolated file to avoid the circular import. try: res = self.loader.check_vp_output_file(fname.strip(), extra_paths=['.', config_rel_path]) except LoaderError as e: raise ConfigError(e) from e try: df = loader_func(res) except Exception as e: raise ConfigError(e) from e return df #TODO: Get rid of this
[docs] def produce_fits_pdf_config(self, fits): """DO NOT USE. For internal use only,""" return [self.produce_fitpdf(fit)['pdf'] for fit in fits]
#TODO: Try to remove the loop from here
[docs] def produce_fits_name(self, fits): """NOTE: EXPERIMENTAL. Return a list with the ids of the fits""" return [fit.name for fit in fits]
#TODO: Try to remove the loop from here
[docs] def produce_fits_as(self, fits_pdf_config): """NOTE: EXPERIMENTAL. Return the as value of the fits, reading it from the installed pdf""" return [pdf.alphas_mz for pdf in fits_pdf_config]
#TODO: Try to remove the loop from here.
[docs] def produce_fits_as_from_fitdeclarations(self, fitdeclarations): """NOTE: EXPERIMENTAL. A hack to obtain fits_as from the fitdeclarations, without having to download and inspect the actual fits.""" alpha_pattern = r'NNPDF\d\d(?:_[a-z]+)*_as_(\d\d\d\d).*' res = [] for fit in fitdeclarations: m = re.match(alpha_pattern, fit) if not m: raise ConfigError(f"Couldn't match fit name {fit} to the " f"pattern {alpha_pattern!r}") res.append(float(m.group(1))/1000) return {'fits_as' : res}
[docs] def produce_fits_name_from_fitdeclarations(self, fitdeclarations): """Inject the names from the ``fitdeclarations`` as the fit_names property""" #Cast nslist away return {'fits_name': list(fitdeclarations)}
[docs] def parse_blacklist_datasets(self, datasets:list): return datasets
[docs] def produce_combine_dataspecs_pseudoreplicas_as( self, dataspecs, how='min', blacklist_datasets=()): if not isinstance(dataspecs, Sequence): raise ConfigError("dataspecs should be a sequence of mappings, not " f"{type(dataspecs).__name__}") if how != 'min': raise ConfigError("Only min is implemented at the moment") dfs = [] fitnames = [] for spec in dataspecs: if not isinstance(spec, Mapping): raise ConfigError("dataspecs should be a sequence of mappings, " f" but {spec} is {type(spec).__name__}") with self.set_context(ns=self._curr_ns.new_child(spec)): _, df = self.parse_from_(None, 'fits_computed_pseudoreplicas_chi2', write=False) _, asval = self.parse_from_(None, 'fits_as', write=False) _, namelist = self.parse_from_(None, 'fits_name', write=False) if not dfs: firstas = asval elif asval != firstas: raise ConfigError("Expecting all as values to be the same") dfs.append(df) fitnames.append(namelist) finalnames = [utils.common_prefix(*ns) + '__combined' for ns in zip(*fitnames)] res = tableloader.combine_pseudoreplica_tables(dfs, finalnames, blacklist_datasets=blacklist_datasets) return {'fits_computed_pseudoreplicas_chi2': res}
#TODO: autogenerate functions like this
[docs] def parse_experiments_covmat_output(self, fname:str, config_rel_path): """NOTE: THIS INTERFACE IS EXPERIMENTAL AND MIGHT CHANGE IN THE FUTURE. Process the output CSV table of the experiments_covmat action and return an equivalent dataframe""" df = self._get_table(tableloader.load_experiments_covmat, fname, config_rel_path) return {'experiments_covmat': df}
#TODO: Move these to their own module when that's supported by reportengine
[docs] def produce_fits_matched_pseudoreplicas_chi2_output(self, pseudoreplicafile:str, fits_name): """DEPRECATED. DO NOT USE.""" import pandas as pd import numpy as np try: df = pd.read_csv(pseudoreplicafile, sep='\t', index_col=[0,1],header=[0,1]) except Exception as e: raise ConfigError(f"Failed to load the table: {e}") from e #Require that the fits are matched so we filer out some that are not #interesting or broken. try: df = df[fits_name] except Exception as e: raise ConfigError("Mismatch between fits provided and fits " f"in the table {pseudoreplicafile}:\n{e}") from e ndataindexer = df.columns.get_locs([slice(None), 'ndata']) lentest = lambda x: len(np.unique(x.dropna()))<=1 samelens = df.iloc[:,ndataindexer].apply(lentest, axis=1).all() if not samelens: raise ConfigError("Incorrect data: Expected all experiments to have the same length.") chindexer = df.columns.get_locs([slice(None), 'central_chi2']) df = df.iloc[:,chindexer] df = df.swaplevel(0,1) #Have it the way the existing functions like newcols = df.columns.set_levels([df.columns.levels[0], ['chi2']]) df.columns = newcols return df
[docs] def parse_fits_computed_pseudoreplicas_chi2_output(self, fname:str, config_rel_path): """Return a namespace (mapping) with the output of ``fits_computed_pseudoreplicas_chi2_table`` as read from the specified filename. Use a {@with@} block to pass it to the providers. The fit names must be provided explicitly.""" return self._get_table(tableloader.load_fits_computed_pseudoreplicas_chi2, fname, config_rel_path)
[docs] def produce_use_fits_computed_pseudoreplicas_chi2_output( self, fits_computed_pseudoreplicas_chi2_output, fits_name): """Select the columns of the input file matching the fits.""" df = fits_computed_pseudoreplicas_chi2_output try: df = df[fits_name] except Exception as e: raise ConfigError(f"Could not select the fit names from the table: {e}") from e return {'fits_computed_pseudoreplicas_chi2': df}
[docs] def produce_use_fits_computed_psedorreplicas_chi2_output( self, fits_computed_psedorreplicas_chi2_output, fits_name): """Select the columns of the input file matching the fits. Note: this is a copy of ``produce_use_fits_computed_pseudoreplicas_chi2_output``. It is here so that `fits_computed_pseudoreplicas_chi2` gets assigned whether `fits_computed_pseudoreplicas_chi2_output` or `fits_computed_psedorreplicas_chi2_output` is specified in the runcard. This is to ensure that old runcards still work. """ df = fits_computed_psedorreplicas_chi2_output try: df = df[fits_name] except Exception as e: raise ConfigError(f"Could not select the fit names from the table: {e}") from e return {'fits_computed_pseudoreplicas_chi2': df}
[docs] @element_of('extra_sums') def parse_extra_sum(self, s:dict): keys = {'dataset_item', 'components'} if s.keys() != keys: d1 = s.keys() - keys d2 = keys - s.keys if d1: raise ConfigError(f'Unable to parse extra_sum: unrecognized keys: {d1}') if d2: raise ConfigError(f'Unable to parse extra_sum. The following keys are required: {d2}') raise RuntimeError() return s
[docs] def produce_fits_matched_pseudoreplicas_chi2_by_experiment_and_dataset(self, fits_computed_pseudoreplicas_chi2, prepend_total:bool=True, extra_sums=None): """Take the table returned by ``fits_matched_pseudoreplicas_chi2_output`` and break it down by experiment. If `preprend_total` is True, the sum over experiments will be included. This provides a namespace list with `suptitle`, `ndata` and `fits_replica_data_correlated`. """ def get_ndata(df): val = df.index.get_level_values(2).unique() if len(val) != 1: raise ConfigError(f"Found different number " f"of points in {df.name}") return val[0] df = fits_computed_pseudoreplicas_chi2 if prepend_total: s = df.loc[(slice(None), 'Total'),:].groupby(level=3).sum(min_count=1) ndata = df.loc[(slice(None), 'Total'),:].groupby(level=0).apply(get_ndata).sum(min_count=1) total = [ {'experiment_label': 'Total', 'by_dataset': [{ 'fits_replica_data_correlated': s, 'suptitle': 'Total', 'ndata': ndata }]}] else: total = [] expres = [] for exp, expdf in df.groupby(level=0): d = {'experiment_label': exp} by_dataset = d['by_dataset'] = [] for ds, dsdf in expdf.groupby(level=1): ndata = dsdf.groupby(level=0).apply(get_ndata).sum() dsdf.index = dsdf.index.droplevel([0,1,2]) if ds == 'Total': if exp != 'Total': ds = f'{exp} Total' by_dataset.insert(0, {'fits_replica_data_correlated': dsdf, 'suptitle':ds, 'ndata':ndata}) else: by_dataset.append({'fits_replica_data_correlated': dsdf, 'suptitle':ds, 'ndata':ndata}) expres.append(d) if extra_sums: dss = {d['suptitle'] for l in [*total, *expres] for d in l['by_dataset']} for es in extra_sums: label = es['dataset_item'] components = es['components'] diff = set(components) - dss if diff: bad_item = next(iter(diff)) raise ConfigError(f"Unrecognized elements in extra_sum: {diff}", bad_item, dss) sliced = tableloader.get_extrasum_slice(df, components) s = sliced.groupby(level=3).sum(min_count=1) ndata = sliced.groupby(level=[0,1]).apply(get_ndata).sum() total.append( {'experiment_label': label, 'by_dataset': [{ 'fits_replica_data_correlated': s, 'suptitle': label, 'ndata': ndata }]}) return [*total, *expres]
def _breakup_by_dataset_item(self, l, dataset_items): if dataset_items is None: return [{**expdict, **dsdict} for expdict in l for dsdict in expdict['by_dataset']] positions = {ds: pos for ds,pos in zip(dataset_items, range(len(dataset_items)))} #NOTE: If you want duplicates for some reason, you'll need to rewrite #this algorithm. if len(positions) != len(dataset_items): raise ConfigError("'dataset_items' cannot have duplicates") res = {} for expdict in l: for dsdict in expdict['by_dataset']: dsname = dsdict['suptitle'] if dsname in positions: res[positions[dsname]] = {**expdict, **dsdict} del positions[dsname] if positions: raise ConfigError(f"Unrecognized dataset_items: {list(positions)}") return [res[index] for index in range(len(dataset_items))]
[docs] def produce_fits_matched_pseudoreplicas_chi2_by_dataset_item( self, fits_matched_pseudoreplicas_chi2_by_experiment_and_dataset, dataset_items:(list,type(None)) = None): """Reorder, filter and flatten the result of fits_matched_pseudoreplicas_chi2_by_experiment_and_dataset with the dataset_items list. If it's not provided, this is equivalent to: fits_matched_pseudoreplicas_chi2_by_experiment_and_dataset::by_dataset Otherwise, the dictionaries will be returned in the order they appear in dataset_items, if they appear. """ l = fits_matched_pseudoreplicas_chi2_by_experiment_and_dataset return self._breakup_by_dataset_item(l, dataset_items)
[docs] def produce_matched_pseudoreplicas_for_total( self, fits_matched_pseudoreplicas_chi2_by_experiment_and_dataset): """Like ``fits_matched_pseudoreplicas_chi2_by_dataset_item``, but restriction the ``dataset_item`` selection to "Total" exclusively.""" res = self.produce_fits_matched_pseudoreplicas_chi2_by_dataset_item( fits_matched_pseudoreplicas_chi2_by_experiment_and_dataset, ['Total']) return res
[docs] def produce_fits_replica_data_correlated_for_total( self, matched_pseudoreplicas_for_total): """Extract `fits_replica_data_correlated` from `matched_pseudoreplicas_for_total`. This is a hack that cannot be done efficiently with collect because of https://github.com/NNPDF/reportengine/issues/8.""" return [matched_pseudoreplicas_for_total[0]['fits_replica_data_correlated']]
[docs] def parse_fits_chi2_paramfits_output(self, fname:str, config_rel_path): """Load the output of ``fits_chi2_table`` adapted to suit the ``paramfits`` module. The fit names must be provided explicitly.""" return self._get_table(tableloader.load_adapted_fits_chi2_table, fname, config_rel_path)
[docs] def produce_use_fits_chi2_paramfits_output(self, fits_chi2_paramfits_output, fits_name): ndatatable, chi2table = fits_chi2_paramfits_output try: chi2table = chi2table[fits_name] except Exception as e: raise ConfigError(f"Could not select the fit names from the table: {e}") from e return {'adapted_fits_chi2_table': chi2table, 'ndatatable':ndatatable}
[docs] def produce_fits_central_chi2_by_experiment_and_dataset(self, adapted_fits_chi2_table, ndatatable, prepend_total=True,extra_sums=None): """Take the table returned by ``fits_matched_pseudoreplicas_chi2_output`` and break it down by experiment. If `preprend_total` is True, the sum over experiments will be included. This provides a namespace list with `suptilte` and `fits_replica_data_correlated`.""" df = adapted_fits_chi2_table if prepend_total: s = df.sort_index().loc[(slice(None), 'Total'), :].sum(min_count=1) total = [ {'experiment_label': 'Total', 'by_dataset': [{ 'fits_total_chi2': s, 'suptitle': 'Total', 'ndata': ndatatable.loc[(slice(None), 'Total')].sum(), }]}] else: total = [] expres = [] for exp, expdf in df.groupby(level='experiment'): d = {'experiment_label': exp} by_dataset = d['by_dataset'] = [] for ds, dsdf in expdf.groupby(level=1): dsdf.index = dsdf.index.droplevel([0]) ndata = ndatatable[(exp,ds)] if ds == 'Total': ds = f'{exp} Total' by_dataset.insert(0, {'fits_total_chi2': dsdf, 'suptitle':ds, 'ndata':ndata}) else: by_dataset.append({'fits_total_chi2': dsdf, 'suptitle':ds, 'ndata':ndata}) expres.append(d) if extra_sums: dss = {d['suptitle'] for l in [*total, *expres] for d in l['by_dataset']} for es in extra_sums: label = es['dataset_item'] components = es['components'] diff = set(components) - dss if diff: bad_item = next(iter(diff)) raise ConfigError(f"Unrecognised element in extra sum: {diff}", bad_item, dss) sliced = tableloader.get_extrasum_slice(df, components) s = sliced.sum() ndata = tableloader.get_extrasum_slice(ndatatable, components).sum() total.append( {'experiment_label': label, 'by_dataset': [{ 'fits_total_chi2': s, 'suptitle': label, 'ndata': ndata, }]}) return [*total, *expres]
[docs] def produce_fits_central_chi2_by_dataset_item( self, fits_central_chi2_by_experiment_and_dataset, dataset_items:(list,type(None)) = None): """Reorder, filter and flatten the result of fits_central_chi2_by_experiment_and_dataset with the dataset_items list. If it's not provided, this is equivalent to: fits_central_chi2_by_experiment_and_dataset::by_dataset Otherwise, the dictionaries will be returned in the order they appear in dataset_items, if they appear. """ l = fits_central_chi2_by_experiment_and_dataset return self._breakup_by_dataset_item(l, dataset_items)
[docs] def produce_fits_central_chi2_for_total( self, fits_central_chi2_by_experiment_and_dataset): res = self.produce_fits_central_chi2_by_dataset_item( fits_central_chi2_by_experiment_and_dataset, ['Total']) return res
# Define aliases for functions with spelling mistakes in their names which have now been corrected # Do this so that old runcards still work produce_combine_dataspecs_pseudorreplicas_as = produce_combine_dataspecs_pseudoreplicas_as produce_fits_matched_pseudorreplicas_chi2_output = produce_fits_matched_pseudoreplicas_chi2_output parse_fits_computed_psedorreplicas_chi2_output = parse_fits_computed_pseudoreplicas_chi2_output produce_fits_matched_pseudorreplicas_chi2_by_experiment_and_dataset = produce_fits_matched_pseudoreplicas_chi2_by_experiment_and_dataset produce_fits_matched_pseudorreplicas_chi2_by_dataset_item = produce_fits_matched_pseudoreplicas_chi2_by_dataset_item produce_matched_pseudorreplcias_for_total = produce_matched_pseudoreplicas_for_total