Source code for validphys.overfit_metric

"""
overfit_metric.py

This module contains the functions used to calculate the overfit metric and
produce the corresponding tables and figures.
"""

import logging

import numpy as np
import pandas as pd
import scipy.stats as stats

from reportengine import collect
from reportengine.figure import figure
from reportengine.table import table
from validphys import plotutils
from validphys.checks import check_at_least_two_replicas

log = logging.getLogger(__name__)

preds = collect("predictions", ("dataset_inputs",))


def _create_new_val_pseudodata(pdf_data_index, fit_data_indices_list):
    """Loads all validation pseudodata replicas used during the fiting of the
    pdf replicas

    Returns
    -------
    np.ndarray
        (nrep,ndata) sized numpy array containing the validation data used to
        fit the pdfs.
    """
    vl_data_fitrep = []
    for fitreplica_info in fit_data_indices_list:
        vl_data_fitrep.append(fitreplica_info.pseudodata.loc[pdf_data_index.val_idx])
    return np.array(vl_data_fitrep)[:, :, 0]


[docs] @check_at_least_two_replicas def calculate_chi2s_per_replica( pdf, # for the check fit_code_version, recreate_pdf_pseudodata_no_table, preds, dataset_inputs, groups_covmat_no_table, ): """Calculates, for each PDF replica, the chi2 of the validation with the pseudodata generated for all other replicas in the fit Parameters ---------- recreate_pdf_pseudodata_no_table : list[namedtuple] List of namedtuples, each of which contains a dataframe containing all the data points, the training indices, and the validation indices. preds : list[pd.core.frame.DataFrame] List of pandas dataframes, each containing the predictions of the pdf replicas for a dataset_input dataset_inputs : list[DataSetInput] groups_covmat_no_table : pdf.core.frame.DataFrame Returns ------- np.ndarray (Npdfs, Npdfs) sized matrix containing the chi2 of a pdf replica calculated to a given psuedodata replica. The diagonal values correspond to the cases where the PDF replica has been fitted to the coresponding pseudodata replica """ fit_name = fit_code_version.columns[0] nnpdf_version = fit_code_version[fit_name]['nnpdf'] if nnpdf_version >= '4.0.5': pp = [] for i, dss in enumerate(dataset_inputs): preds_witout_cv = preds[i].drop(0, axis=1) df = pd.concat({dss.name: preds_witout_cv}, names=["dataset"]) pp.append(df) PDF_predictions = pd.concat(pp) chi2s_per_replica = [] for enum, pdf_data_index in enumerate(recreate_pdf_pseudodata_no_table): prediction_filter = pdf_data_index.val_idx.droplevel(level=0) prediction_filter.rename(["dataset", "data"], inplace=True) PDF_predictions_val = PDF_predictions.loc[prediction_filter] PDF_predictions_val = PDF_predictions_val.values[:, enum] new_val_pseudodata_list = _create_new_val_pseudodata( pdf_data_index, recreate_pdf_pseudodata_no_table ) invcovmat_vl = np.linalg.inv( groups_covmat_no_table[pdf_data_index.val_idx].T[pdf_data_index.val_idx] ) tmp = PDF_predictions_val - new_val_pseudodata_list chi2 = np.einsum("ij,jk,ik->i", tmp, invcovmat_vl, tmp) / tmp.shape[1] chi2s_per_replica.append(chi2) ret = np.array(chi2s_per_replica) else: log.warning( f"""Since {fit_name} pseudodata generation has changed, hence the overfit metric cannot be determined.""" ) ret = np.array(np.nan) return ret
[docs] def array_expected_overfitting( calculate_chi2s_per_replica, replica_data, number_of_resamples=1000, resampling_fraction=0.95 ): """Calculates the expected difference in chi2 between: 1. The chi2 of a PDF replica calculated using the corresponding pseudodata replica used during the fit 2. The chi2 of a PDF replica calculated using an alternative i.i.d random pseudododata replicas The expected difference along with an error estimate is obtained through a bootstrapping consisting of ``number_of_resamples`` resamples per pdf replica where each resampling contains a fraction ``resampling_fraction`` of all replicas. Parameters ---------- calculate_chi2s_per_replica : np.ndarray validation chi2 per pdf replica replica_data : list(vp.fitdata.FitInfo) number_of_resamples : int, optional number of resamples per pdf replica, by default 1000 resampling_fraction : float, optional fraction of replicas used in the bootstrap resampling, by default 0.95 Returns ------- np.ndarray (number_of_resamples*Npdfs,) sized array containing the mean delta chi2 values per resampled list. """ # calculate_chi2s_per_replica is set to NaN if the pseudodata generation # has changed sinc the fit has been performed. As a result the overfitting # metric can no longer be determined. if (calculate_chi2s_per_replica != calculate_chi2s_per_replica).all(): list_expected_overfitting = calculate_chi2s_per_replica else: fitted_val_erf = np.array([info.validation for info in replica_data]) number_pdfs = calculate_chi2s_per_replica.shape[0] list_expected_overfitting = [] for _ in range(number_pdfs * number_of_resamples): mask = np.random.randint(0, number_pdfs, size=int(resampling_fraction * number_pdfs)) res_tmp = calculate_chi2s_per_replica[mask][:, mask] fitted_val_erf_tmp = fitted_val_erf[mask] expected_val_chi2 = res_tmp.mean(axis=0) delta_chi2 = fitted_val_erf_tmp - expected_val_chi2 expected_delta_chi2 = delta_chi2.mean() list_expected_overfitting.append(expected_delta_chi2) return np.array(list_expected_overfitting)
[docs] @figure def plot_overfitting_histogram(fit, array_expected_overfitting): """Plots the bootrap error and central value of the overfittedness in a historgram""" mean = array_expected_overfitting.mean() std = array_expected_overfitting.std() fig, ax = plotutils.subplots() # if array_expected_overfitting is nan it should not produce a histogram if (array_expected_overfitting == array_expected_overfitting).all(): ax.hist(array_expected_overfitting, bins=50, density=True) ax.axvline(x=mean, color="black") ax.axvline(x=0, color="black", linestyle="--") xrange = [array_expected_overfitting.min(), array_expected_overfitting.max()] xgrid = np.linspace(xrange[0], xrange[1], num=100) ax.plot(xgrid, stats.norm.pdf(xgrid, mean, std)) ax.set_xlabel(r"$\mathcal{R}_O$") ax.set_ylabel("density") ax.set_title(f"{fit.label}") fig.tight_layout() return fig
fits_overfitting_summary = collect("fit_overfitting_summary", ("fits", "fitcontext"))
[docs] @table def fit_overfitting_summary(fit, array_expected_overfitting): """Creates a table containing the overfitting information: - mean chi2 difference - bootstrap error - sigmas away from 0 """ mean = array_expected_overfitting.mean() std = array_expected_overfitting.std() return pd.DataFrame( [mean, std, mean / std], columns=[fit.label], index=["mean", "bootstrap error", "sigmas away from 0"], )
[docs] @table def summarise_overfitting(fits_overfitting_summary): """Same as `fit_overfitting_summary`, but collected over all `fits` in the runcard and put in a single table. """ return pd.concat(fits_overfitting_summary, axis=1)