Source code for validphys.eff_exponents

# -*- coding: utf-8 -*-
"""
Tools for computing and plotting effective exponents.
"""
from __future__ import generator_stop

import logging
import numbers
import random
import warnings

import matplotlib as mpl
import numpy as np
import pandas as pd

from reportengine import collect
from reportengine.checks import check_positive
from reportengine.compat import yaml
from reportengine.figure import figuregen
from reportengine.floatformatting import format_number, significant_digits
from reportengine.table import table
from validphys.checks import check_pdf_normalize_to, check_xlimits, make_argcheck
from validphys.core import PDF, FitSpec
from validphys.pdfbases import Basis, check_basis
import validphys.pdfgrids as pdfgrids
from validphys.pdfplots import BandPDFPlotter, PDFPlotter

log = logging.getLogger(__name__)

INTERNAL_LINESTYLE = ['-.', ':']
INTERNAL_COLOR = mpl.rcParams['axes.prop_cycle'].by_key()["color"]


[docs] @check_positive('Q') @make_argcheck(check_basis) @check_xlimits def alpha_eff( pdf: PDF, *, xmin: numbers.Real = 1e-6, xmax: numbers.Real = 1e-3, npoints: int = 200, Q: numbers.Real = 1.65, basis: (str, Basis), flavours: (list, tuple, type(None)) = None, ): """Return a list of xplotting_grids containing the value of the effective exponent alpha at the specified values of x and flavour. alpha is relevant at small x, hence the linear scale. basis: Is one of the bases defined in pdfbases.py. This includes 'flavour' and 'evolution'. flavours: A set of elements from the basis. If None, the defaults for that basis will be selected. Q: The PDF scale in GeV. """ # Loading the filter map of the fit/PDF checked = check_basis(basis, flavours) basis = checked['basis'] flavours = checked['flavours'] if npoints == 2: xGrid = np.array([xmin, xmax]) else: xGrid = pdfgrids.xgrid(xmin, xmax, 'log', npoints) pdfGrid = pdfgrids.xplotting_grid(pdf, Q, xgrid=xGrid, basis=basis, flavours=flavours) pdfGrid_values = pdfGrid.grid_values.data # NOTE: without this I get "setting an array element with a sequence" xGrid = pdfGrid.xgrid with warnings.catch_warnings(): warnings.simplefilter('ignore', RuntimeWarning) alphaGrid_values = -np.log(abs(pdfGrid_values / xGrid)) / np.log(xGrid) alphaGrid_values[alphaGrid_values == -np.inf] = np.nan # when PDF_i =0 alphaGrid = pdfGrid.copy_grid(grid_values=pdf.stats_class(alphaGrid_values)) return alphaGrid
[docs] @check_positive('Q') @make_argcheck(check_basis) @check_xlimits def beta_eff( pdf, *, xmin: numbers.Real = 0.6, xmax: numbers.Real = 0.9, npoints: int = 200, Q: numbers.Real = 1.65, basis: (str, Basis), flavours: (list, tuple, type(None)) = None, ): """Return a list of xplotting_grids containing the value of the effective exponent beta at the specified values of x and flavour. beta is relevant at large x, hence the linear scale. basis: Is one of the bases defined in pdfbases.py. This includes 'flavour' and 'evolution'. flavours: A set of elements from the basis. If None, the defaults for that basis will be selected. Q: The PDF scale in GeV. """ checked = check_basis(basis, flavours) basis = checked['basis'] flavours = checked['flavours'] if npoints == 2: xGrid = np.array([xmin, xmax]) else: xGrid = pdfgrids.xgrid(xmin, xmax, 'linear', npoints) pdfGrid = pdfgrids.xplotting_grid(pdf, Q, xgrid=xGrid, basis=basis, flavours=flavours) pdfGrid_values = pdfGrid.grid_values.data # NOTE: without this I get "setting an array element with a sequence" xGrid = pdfGrid.xgrid with warnings.catch_warnings(): warnings.simplefilter('ignore', RuntimeWarning) betaGrid_values = np.log(abs(pdfGrid_values / xGrid)) / np.log(1 - xGrid) betaGrid_values[betaGrid_values == -np.inf] = np.nan # when PDF_i =0 betaGrid = pdfGrid.copy_grid(grid_values=pdf.stats_class(betaGrid_values)) return betaGrid # .grid_values
[docs] class PreprocessingPlotter(PDFPlotter): """Class inherenting from BandPDFPlotter, changing title and ylabel to reflect the effective exponent being plotted. """ def __init__(self, exponent, *args, **kwargs): self.exponent = exponent super().__init__(*args, **kwargs)
[docs] def get_title(self, parton_name): return fr"$\{self.exponent}_e$ for ${parton_name}$ at {format_number(self.Q, 3)} Gev"
[docs] def get_ylabel(self, parton_name): if self.normalize_to is not None: return "Ratio to {}".format(self.normalize_pdf.label) else: return fr"$\{self.exponent}_e$ for ${parton_name}$"
[docs] def get_alpha_lines(effective_exponents_table_internal): """Given an effective_exponents_table_internal returns the rows with bounds of the alpha effective exponent for all flavours, used to plot horizontal lines on the alpha effective exponent plots. """ return effective_exponents_table_internal.iloc[0::2, :]
[docs] def get_beta_lines(effective_exponents_table_internal): """Same as `get_alpha_lines` but for beta""" return effective_exponents_table_internal.iloc[1::2, :]
pdfs_alpha_lines = collect('get_alpha_lines', ("pdfs",)) pdfs_beta_lines = collect('get_beta_lines', ("pdfs",)) fits_alpha_lines = collect('get_alpha_lines', ('fits', 'fitpdf')) fits_beta_lines = collect('get_beta_lines', ('fits', 'fitpdf'))
[docs] class ExponentBandPlotter(BandPDFPlotter, PreprocessingPlotter): def __init__(self, hlines, exponent, *args, **kwargs): super().__init__(exponent, *args, **kwargs) self.hlines = hlines
[docs] def draw(self, pdf, grid, flstate): """Overload :py:meth:`BandPDFPlotter.draw` to plot bands of the effective exponent calculated from the replicas and horizontal lines for the effective exponents of the previous/next fits, if possible. ``flstate`` is an element of the flavours for the first pdf specified in pdfs. If this flavour doesn't exist in the current pdf's fitbasis or the set of flavours for which the preprocessing exponents exist for the current pdf no horizontal lines are plotted. """ pdf_index = self.pdfs.index(pdf) hlines = self.hlines[pdf_index] # get the correct index label - don't assume table ordering. Basis must # be same for all fits so assuming flavour exists in table is valid. table_fl_index = f"${grid.basis.elementlabel(flstate.fl)}$" errdown, errup = super().draw(pdf, grid, flstate) col_label = hlines.columns.get_level_values(0).unique() # need to have plotted bands before getting x limit xmin, xmax = flstate.ax.get_xlim() for i, label in enumerate(col_label): # wrap color index since number of pdfs could in theory exceed # number of colors handle = flstate.ax.hlines( hlines.loc[table_fl_index, label].values, xmin=xmin, xmax=xmax, linestyle=INTERNAL_LINESTYLE[i], color=INTERNAL_COLOR[pdf_index % len(INTERNAL_COLOR)], ) flstate.handles.append(handle) flstate.labels.append(label) # need to return xgrid shaped object but with hlines taken into account to get plots nice hline_positions = hlines.loc[table_fl_index, :].values.flatten() new_errdown = min([*errdown, *hline_positions]) new_errup = max([*errup, *hline_positions]) return new_errdown * np.ones_like(errdown), new_errup * np.ones_like(errup)
alpha_eff_pdfs = collect('alpha_eff', ('pdfs',))
[docs] @figuregen @check_pdf_normalize_to def plot_alpha_eff_internal( pdfs, alpha_eff_pdfs, pdfs_alpha_lines, normalize_to: (int, str, type(None)) = None, ybottom=None, ytop=None, ): """Plot the central value and the uncertainty of a list of effective exponents as a function of x for a given value of Q. If normalize_to is given, plot the ratios to the corresponding alpha effective. Otherwise, plot absolute values. See the help for ``xplotting_grid`` for information on how to set basis, flavours and x ranges. Yields one figure per PDF flavour. normalize_to: Either the name of one of the alpha effective or its corresponding index in the list, starting from one, or None to plot absolute values. """ yield from ExponentBandPlotter( pdfs_alpha_lines, 'alpha', pdfs, alpha_eff_pdfs, 'log', normalize_to, ybottom, ytop )
alpha_eff_fits = collect('alpha_eff', ('fits', 'fitpdf'))
[docs] @figuregen def plot_alpha_eff( fits_pdf, alpha_eff_fits, fits_alpha_lines, normalize_to: (int, str, type(None)) = None, ybottom=None, ytop=None, ): """Plot the central value and the uncertainty of a list of effective exponents as a function of x for a given value of Q. If normalize_to is given, plot the ratios to the corresponding alpha effective. Otherwise, plot absolute values. See the help for ``xplotting_grid`` for information on how to set basis, flavours and x ranges. Yields one figure per PDF flavour. normalize_to: Either the name of one of the alpha effective or its corresponding index in the list, starting from one, or None to plot absolute values. xscale: One of the matplotlib allowed scales. If undefined, it will be set based on the scale in xgrid, which should be used instead. """ return plot_alpha_eff_internal( fits_pdf, alpha_eff_fits, fits_alpha_lines, normalize_to, ybottom, ytop )
beta_eff_pdfs = collect('beta_eff', ('pdfs',))
[docs] @figuregen @check_pdf_normalize_to def plot_beta_eff_internal( pdfs, beta_eff_pdfs, pdfs_beta_lines, normalize_to: (int, str, type(None)) = None, ybottom=None, ytop=None, ): """Same as plot_alpha_eff_internal but for beta effective exponent""" yield from ExponentBandPlotter( pdfs_beta_lines, 'beta', pdfs, beta_eff_pdfs, 'linear', normalize_to, ybottom, ytop )
beta_eff_fits = collect('beta_eff', ('fits', 'fitpdf'))
[docs] @figuregen def plot_beta_eff( fits_pdf, beta_eff_fits, fits_beta_lines, normalize_to: (int, str, type(None)) = None, ybottom=None, ytop=None, ): """Same as plot_alpha_eff but for beta effective exponents""" return plot_beta_eff_internal( fits_pdf, beta_eff_fits, fits_beta_lines, normalize_to, ybottom, ytop )
[docs] def previous_effective_exponents(basis: str, fit: (FitSpec, type(None)) = None): """If provided with a fit, check that the `basis` is the basis which was fitted if so then return the previous effective exponents read from the fit runcard. """ if fit is None: return None else: fitting = fit.as_input()["fitting"] if fitting["fitbasis"] == basis: return fitting["basis"] else: return None
[docs] @table def previous_effective_exponents_table(fit: FitSpec): """Given a fit, reads the previous exponents from the fit runcard""" fitting = fit.as_input()["fitting"] checked = check_basis( fitting["fitbasis"], [runcard_fl['fl'] for runcard_fl in fitting["basis"]] ) basis = checked["basis"] flavours = checked["flavours"] prev_a_bounds = [runcard_fl['smallx'] for runcard_fl in fitting["basis"]] prev_b_bounds = [runcard_fl['largex'] for runcard_fl in fitting["basis"]] # make single list alternating alpha and beta bounds data = [vals for pair in zip(prev_a_bounds, prev_b_bounds) for vals in pair] flavours_label = [f"${basis.elementlabel(fl)}$" for fl in flavours] ind = pd.MultiIndex.from_product([flavours_label, [r"$\alpha$", r"$\beta$"]]) columns = pd.MultiIndex.from_product([[f"prev ({fit.label})"], ["Min", "Max"]]) return pd.DataFrame(data, index=ind, columns=columns)
[docs] @table @make_argcheck(check_basis) def next_effective_exponents_table( pdf: PDF, *, fitq0fromfit: (numbers.Real, type(None)) = None, x1_alpha: numbers.Real = 1e-6, x2_alpha: numbers.Real = 1e-3, x1_beta: numbers.Real = 0.65, x2_beta: numbers.Real = 0.95, basis: (str, Basis), flavours: (list, tuple, type(None)) = None, ): """Given a PDF, calculate the next effective exponents By default `x1_alpha = 1e-6`, `x2_alpha = 1e-3`, `x1_beta = 0.65`, and `x2_beta = 0.95`, but different values can be specified in the runcard. The values control where the bounds of alpha and beta are evaluated: alpha_min: singlet/gluon: the 2x68% c.l. lower value evaluated at x=`x1_alpha` others : min(2x68% c.l. lower value evaluated at x=`x1_alpha` and x=`x2_alpha`) alpha_max: singlet/gluon: min(2 and the 2x68% c.l. upper value evaluated at x=`x1_alpha`) others : min(2 and max(2x68% c.l. upper value evaluated at x=`x1_alpha` and x=`x2_alpha`)) beta_min: max(0 and min(2x68% c.l. lower value evaluated at x=`x1_beta` and x=`x2_beta`)) beta_max: max(2x68% c.l. upper value evaluated at x=`x1_beta` and x=`x2_beta`) """ if fitq0fromfit is None: log.warning("Computing the next effective exponent directly from the PDF") Qmin = pdf.q_min log.warning(f"Taking q = {Qmin} GeV as the reference scale") else: Qmin = fitq0fromfit alpha_effs = alpha_eff( pdf, xmin=x1_alpha, xmax=x2_alpha, npoints=2, Q=Qmin, basis=basis, flavours=flavours ) beta_effs = beta_eff( pdf, xmin=x1_beta, xmax=x2_beta, npoints=2, Q=Qmin, basis=basis, flavours=flavours ) eff_exp_data = [] alphastats = alpha_effs.grid_values betastats = beta_effs.grid_values with warnings.catch_warnings(): warnings.simplefilter('ignore', RuntimeWarning) alpha_cv = np.nanmean(alphastats.error_members(), axis=0) beta_cv = np.nanmean(betastats.error_members(), axis=0) # tuple of low and high values repectively alpha68 = alphastats.errorbar68() beta68 = betastats.errorbar68() alpha_sigup = alpha68[1] - alpha_cv beta_sigup = beta68[1] - beta_cv alpha_sigdown = -alpha68[0] + alpha_cv beta_sigdown = -beta68[0] + beta_cv flavours_label = [] for j, fl in enumerate(flavours): # the gluon/singlet case if fl in (r"\Sigma", "g"): new_alpha_bounds = [ alpha_cv[j, 0] - 2 * alpha_sigdown[j, 0], min(2, alpha_cv[j, 0] + 2 * alpha_sigup[j, 0]), ] else: new_alpha_bounds = [ min(alpha_cv[j, :] - 2 * alpha_sigdown[j, :]), min(2, max(alpha_cv[j, :] + 2 * alpha_sigup[j, :])), ] new_beta_bounds = [ max(0, min(beta_cv[j, :] - 2 * beta_sigdown[j, :])), max(beta_cv[j, :] + 2 * beta_sigup[j, :]), ] eff_exp_data.extend((new_alpha_bounds, new_beta_bounds)) flavours_label.append(f"${basis.elementlabel(fl)}$") ind = pd.MultiIndex.from_product([flavours_label, [r"$\alpha$", r"$\beta$"]]) eff_exp_columns = pd.MultiIndex.from_product([[f"next ({pdf.label})"], ["Min", "Max"]]) df = pd.DataFrame(eff_exp_data, index=ind, columns=eff_exp_columns) return df
[docs] @table def effective_exponents_table_internal(next_effective_exponents_table, *, fit=None, basis): """Returns a table which concatenates previous_effective_exponents_table and next_effective_exponents_table if both tables contain effective exponents in the same basis. If the previous exponents are in a different basis, or no fit was given to read the previous exponents from, then only the next exponents table is returned, for plotting purposes. """ if fit is not None and fit.as_input()["fitting"]["fitbasis"] == basis: # have to call action here in case fit is None previous_table = previous_effective_exponents_table(fit) df = pd.concat((previous_table, next_effective_exponents_table), axis=1) else: df = next_effective_exponents_table return df
effective_exponents_table = collect('effective_exponents_table_internal', ('fitpdfandbasis',)) fmt = lambda a: float(significant_digits(a, 4)) next_fit_eff_exps_table = collect("next_effective_exponents_table", ("fitpdfandbasis",))
[docs] def iterate_preprocessing_yaml(fit, next_fit_eff_exps_table, _flmap_np_clip_arg=None): """Using py:func:`next_effective_exponents_table` update the preprocessing exponents of the input ``fit``. This is part of the usual pipeline referred to as "iterating a fit", for more information see: :ref:`run-iterated-fit`. A fully iterated runcard can be obtained from the action :py:func:`iterated_runcard_yaml`. This action can be used in a report but should be wrapped in a code block to be formatted correctly, for example: ```yaml {@iterate_preprocessing_yaml@} ``` Alternatively, using the API, the yaml dump returned by this function can be written to a file e.g >>> from validphys.api import API >>> yaml_output = API.iterate_preprocessing_yaml(fit=<fit name>) >>> with open("output.yml", "w+") as f: ... f.write(yaml_output) Parameters ---------- fit: validphys.core.FitSpec Whose preprocessing range will be iterated, the output runcard will be the same as the one used to run this fit, except with new preprocessing range. next_fit_eff_exps_table: pd.DataFrame Table outputted by :py:func:`next_fit_eff_exps_table` containing the next preprocessing ranges. _flmap_np_clip_arg: dict Internal argument used by ``vp-nextfitruncard``. Dictionary containing a mapping like ``{<flavour>: {<largex/smallx>: {a_min: <min value>, a_max: <max value>}}}``. If a flavour is present in ``_flmap_np_clip_arg`` then the preprocessing ranges will be passed through ``np.clip`` with the arguments supplied in the mapping. """ (df_effexps,) = next_fit_eff_exps_table # Use round trip loader rather than safe_load in fit.as_input() with open(fit.path / "filter.yml", "r") as f: filtermap = yaml.load(f, yaml.RoundTripLoader) previous_exponents = filtermap["fitting"]["basis"] basis = filtermap["fitting"]["fitbasis"] checked = check_basis(basis, None) basis = checked["basis"] # use order defined in runcard. runcard_flavours = [f"{basis.elementlabel(ref_fl['fl'])}" for ref_fl in previous_exponents] for i, fl in enumerate(runcard_flavours): alphas = df_effexps.loc[(f"${fl}$", r"$\alpha$")].values betas = df_effexps.loc[(f"${fl}$", r"$\beta$")].values flmap_key = previous_exponents[i]["fl"] if _flmap_np_clip_arg is not None and _flmap_np_clip_arg.get(flmap_key) is not None: smallx_args = _flmap_np_clip_arg[flmap_key].get("smallx") largex_args = _flmap_np_clip_arg[flmap_key].get("largex") if smallx_args is not None: alphas = np.clip(alphas, **smallx_args) if largex_args is not None: betas = np.clip(betas, **largex_args) previous_exponents[i]["smallx"] = [fmt(alpha) for alpha in alphas] previous_exponents[i]["largex"] = [fmt(beta) for beta in betas] return yaml.dump(filtermap, Dumper=yaml.RoundTripDumper)
[docs] def update_runcard_description_yaml(iterate_preprocessing_yaml, _updated_description=None): """Take the runcard with iterated preprocessing and update the description if ``_updated_description`` is provided. As with :py:func:`iterate_preprocessing_yaml` the result can be used in a report but should be wrapped in a code block to be formatted correctly, for example: ```yaml {@update_runcard_description_yaml@} ``` """ filtermap = yaml.load(iterate_preprocessing_yaml, yaml.RoundTripLoader) # update description if necessary if _updated_description is not None: filtermap["description"] = _updated_description return yaml.dump(filtermap, Dumper=yaml.RoundTripDumper)
[docs] def iterated_runcard_yaml(fit, update_runcard_description_yaml): """ Takes the runcard with preprocessing iterated and description updated then - Updates the t0 pdf set to be ``fit`` - Modifies the random seeds (to random unsigned long ints) This should facilitate running a new fit with identical input settings as the specified ``fit`` with the t0, seeds and preprocessing iterated. For more information see: :ref:`run-iterated-fit` This action can be used in a report but should be wrapped in a code block to be formatted correctly, for example: ```yaml {@iterated_runcard_yaml@} ``` alternatively, using the API, the yaml dump returned by this function can be written to a file e.g >>> from validphys.api import API >>> yaml_output = API.iterated_runcard_yaml( ... fit=<fit name>, ... _updated_description="My iterated fit" ... ) >>> with open("output.yml", "w+") as f: ... f.write(yaml_output) """ filtermap = yaml.load(update_runcard_description_yaml, yaml.RoundTripLoader) # iterate t0 filtermap["datacuts"]["t0pdfset"] = fit.name # Update seeds with valid pseudorandom unsigned long int # Check if seeds exist especially since extra seeds needed in n3fit vs nnfit # Start with seeds in "fitting" section of runcard fitting_seeds = ["seed", "trvlseed", "nnseed", "mcseed"] fitting_data = filtermap.get("fitting") maxint = np.iinfo('int32').max for seed in fitting_seeds: if seed in filtermap: filtermap[seed] = random.randrange(0, maxint) elif fitting_data is not None and seed in fitting_data: # BCH # For older runcards the seeds are inside the `fitting` namespace fitting_data[seed] = random.randrange(0, maxint) # Next "closuretest" section of runcard if "closuretest" in filtermap: closuretest_data = filtermap["closuretest"] if "filterseed" in closuretest_data: closuretest_data["filterseed"] = random.randrange(0, maxint) if "fiatlux" in filtermap: filtermap['fiatlux']['luxset'] = fit.name return yaml.dump(filtermap, Dumper=yaml.RoundTripDumper)