Source code for validphys.correlations

# -*- coding: utf-8 -*-
"""
Utilities for computing correlations in batch.

@author: Zahari Kassabov
"""
import numpy as np
import numpy.linalg as la

from reportengine import collect
from validphys.checks import check_pdf_is_montecarlo
from validphys.core import Stats


# This would be a good candidate to be optimized to calculate everything in one
# pass over x,
def _basic_obs_pdf_correlation(pdf_val, obs_val):
    """Calculate the correlation between pdfs and observables.
    The expected format is two arrays

    obs_val: (nbin x nreplicas) as returned from thresults.error_members
    pdf_val: (nreplicas x nf x nf) as returned from xplotting_grid.grid_values.error_members

    The returned array contains the PDF correlation between
    the value of the obsevable and the PDF at the corresponding point in (fl,x)
    space. The dimensions are:
    (nbins x nf x nx), compatible with grid_values, upon
    changing replicas->bins.
    """
    x = pdf_val - np.mean(pdf_val, axis=0)
    y = (obs_val - np.mean(obs_val, axis=-1, keepdims=True)).T

    # We want to compute:
    # sum(x*y)/(norm(x)*norm(y))
    # broadcast to the appropriate dimensions

    num = np.einsum('ij,ikm->jkm', y, x)

    xnorm = la.norm(x, axis=0)
    ynorm = la.norm(y, axis=0)
    # like np.outer, but keeping the right shape
    den = np.einsum('i,jk->ijk', ynorm, xnorm)

    return num / den


def _basic_obs_obs_correlation(obs1, obs2):
    """Calculate the correlation between two observables. The expected format is
    arrays instances of:

    obs1: (nbins, nreplicas)
    obs2: (nbins, nreplicas)

    The result is (nbins1 , nbins2), a mareix containing the correlation
    coefficients between the two sets.
    """
    x = obs1 - np.mean(obs1, axis=1, keepdims=True)
    y = (obs2 - np.mean(obs2, axis=1, keepdims=True)).T

    return x @ y / np.outer(la.norm(x, axis=1), la.norm(y, axis=0))


[docs] @check_pdf_is_montecarlo def obs_pdf_correlations(pdf, results, xplotting_grid): """Return the correlations between each point in a dataset and the PDF values on a grid of (x,f) points in a format similar to `xplotting_grid`.""" _, th = results # Wrap the result in a standard Stats class # since the result is (npoints, flavours, ndata) and has nothing to do with the PDF replicas pdf_val = xplotting_grid.grid_values.error_members() obs_val = th.error_members corrs = Stats(_basic_obs_pdf_correlation(pdf_val, obs_val)) return xplotting_grid.copy_grid(grid_values=corrs)
corrpair_results = collect("results", ["corrpair"]) corrpair_datasets = collect("dataset", ["corrpair"])
[docs] @check_pdf_is_montecarlo def obs_obs_correlations(pdf, corrpair_results): """Return the theoretical correlation matrix between a pair of observables.""" (_, th1), (_, th2) = corrpair_results return _basic_obs_obs_correlation(th1.error_members, th2.error_members)