Source code for validphys.closuretest.closure_plots

"""
closuretest/plots.py

Plots of statistical estimators for closure tests
"""
from reportengine.figure import figure
from validphys import plotutils


[docs] @figure def plot_biases(biases_table): """ Plot the bias of each experiment for all fits with bars. For information on how biases is calculated see `bias_experiment` """ fig, ax = plotutils.barplot( biases_table.values.T, collabels=biases_table.index.values, datalabels=biases_table.columns.droplevel(1).values, ) ax.set_title("Biases per experiment for each fit") ax.legend() return fig
[docs] @figure def plot_delta_chi2(delta_chi2_bootstrap, fits): """Plots distributions of delta chi2 for each fit in `fits`. Distribution is generated by bootstrapping. For more information on delta chi2 see `delta_chi2_bootstrap` """ delta_chi2 = delta_chi2_bootstrap.T labels = [fit.label for fit in fits] fig, ax = plotutils.subplots() for i, label in enumerate(labels): ax.hist(delta_chi2[:, i], alpha=0.3, label=label, zorder=100) ax.set_xlabel(r"$\Delta_{\chi^{2}}$") l = ax.legend() l.set_zorder(1000) ax.set_title(r"Total $\Delta_{\chi^{2}}$ for each fit") return fig
[docs] def errorbar_figure_from_table(df): """Given a table with even columns as central values as odd columns as errors plot an errorbar plot""" fig, ax = plotutils.plot_horizontal_errorbars( df.values[:, ::2].T, df.values[:, 1::2].T, df.index.values, df.columns.unique(0), xlim=0, ) return fig, ax
[docs] @figure def plot_fits_bootstrap_variance(fits_bootstrap_variance_table): """Plot variance as error bars, with mean and central value calculated from bootstrap sample """ fig, ax = errorbar_figure_from_table(fits_bootstrap_variance_table) ax.set_title("Variance by experiment for closure fits") return fig
[docs] @figure def plot_fits_bootstrap_bias(fits_bootstrap_bias_table): """Plot the bias for each experiment for all `fits` as a point with an error bar, where the error bar is given by bootstrapping the bias across replicas The number of bootstrap samples can be controlled by the parameter `bootstrap_samples` """ fig, ax = errorbar_figure_from_table(fits_bootstrap_bias_table) ax.set_title("Bias by experiment for closure fits") return fig