Source code for validphys.chi2grids

"""
chi2grids.py

Compute and store χ² data from replicas, possibly keeping the correlations
between pseudorreplica fluctuations between different fits. This is applied
here to parameter determinations such as those of αs.
"""
from collections import namedtuple
import logging

import numpy as np
import pandas as pd

from reportengine import collect
from reportengine.table import table
from validphys.calcutils import calc_chi2

PseudoReplicaExpChi2Data = namedtuple(
    "PseudoReplicaChi2Data", ["group", "ndata", "chi2", "nnfit_index"]
)


log = logging.getLogger(__name__)


[docs] def computed_pseudoreplicas_chi2( fitted_make_replicas, group_result_table_no_table, # to get the results already in the form of a dataframe groups_sqrtcovmat, ): """Return a dataframe with the chi² of each replica with its corresponding pseudodata (i.e. the one it was fitted with). The chi² is computed by group. The index of the output dataframe is ``['group', 'ndata' , 'nnfit_index']`` where ``nnftix_index`` is the name of the corresponding replica """ # Stack the replica pseudodata to have the prediction shape r_data = np.stack(fitted_make_replicas, axis=1) # Drop data central and theory central which is not useful here r_prediction = group_result_table_no_table.drop(columns=["data_central", "theory_central"]) # Now compute the chi2 in a per-group basis diff = r_prediction - r_data group_level = r_prediction.index.get_level_values("group") # Save the results in a dataframe similar (but not equal) to the old one df_output = [] for group in group_level.unique(): group_diff = diff.loc[group_level == group] its_covmat = groups_sqrtcovmat[group_level == group][group] chi2_per_replica = calc_chi2(its_covmat, group_diff) ndata = len(group_diff) for i, chi2 in enumerate(chi2_per_replica): df_output.append(PseudoReplicaExpChi2Data(group, ndata, chi2, i)) df = pd.DataFrame(df_output, columns=PseudoReplicaExpChi2Data._fields) df.set_index(["group", "ndata", "nnfit_index"], inplace=True) df.sort_index(inplace=True) return df
# TODO: Probably fitcontext should set all of the variables required to compute # this. But better setting # them explicitly than setting some, so we require the user to do that. fits_computed_pseudoreplicas_chi2 = collect(computed_pseudoreplicas_chi2, ("fits",)) dataspecs_computed_pseudorreplicas_chi2 = collect(computed_pseudoreplicas_chi2, ("dataspecs",))
[docs] @table def export_fits_computed_pseudoreplicas_chi2(fits_computed_pseudoreplicas_chi2): """Hack to force writting the CSV output""" return fits_computed_pseudoreplicas_chi2