Source code for n3fit.layers.rotations

"""
    This module includes rotation layers
"""
import numpy as np

from n3fit.backends import MetaLayer
from n3fit.backends import operations as op
from validphys import pdfbases


[docs] class Rotation(MetaLayer): """ Rotates the input through some user defined rotation matrix. Given an input matrix M_{m,n} with an input x_{m}, returns y_{n} = x_{m}M_{m,n} Parameters ---------- rotation_matrix: np.array rotation matrix rotation_axis: int rotation_axis of input to be rotated """ def __init__(self, rotation_matrix, rotation_axis=3, **kwargs): self.rotation_matrix = op.numpy_to_tensor(rotation_matrix) self.rotation_axis = rotation_axis super().__init__(**kwargs)
[docs] def is_identity(self): """Returns true if the rotation is an identity""" # check whether it is a mxm matrix if self.rotation_matrix.shape[0] == self.rotation_matrix.shape[1]: # check whether it is the identity iden = np.identity(self.rotation_matrix.shape[0]) return np.allclose(self.rotation_matrix, iden)
[docs] def call(self, x_raw): rotated = op.tensor_product(x_raw, self.rotation_matrix, [self.rotation_axis, 0]) # this puts the rotated axis back in the original place return op.swapaxes(rotated, -1, self.rotation_axis)
[docs] class FlavourToEvolution(Rotation): """ Rotates from the flavour basis to the evolution basis. """ def __init__(self, flav_info, fitbasis, **kwargs): rotation_matrix = pdfbases.fitbasis_to_NN31IC(flav_info, fitbasis) super().__init__(rotation_matrix, **kwargs)
[docs] class FkRotation(Rotation): """ Applies a transformation from the dimension-9 evolution basis to the dimension-14 evolution basis used by the fktables. The input to this layer is a `pdf_raw` variable which is expected to have a shape (1, None, 9), and it is then rotated to an output (1, None, 14) """ def __init__(self, output_dim=14, name="evolution", **kwargs): self.output_dim = output_dim rotation_matrix = self._create_rotation_matrix() super().__init__(rotation_matrix, name=name, **kwargs) def _create_rotation_matrix(self): """Create the rotation matrix""" array = np.array( [ [0, 0, 0, 0, 0, 0, 0, 0, 0], # photon [1, 0, 0, 0, 0, 0, 0, 0, 0], # sigma [0, 1, 0, 0, 0, 0, 0, 0, 0], # g [0, 0, 1, 0, 0, 0, 0, 0, 0], # v [0, 0, 0, 1, 0, 0, 0, 0, 0], # v3 [0, 0, 0, 0, 1, 0, 0, 0, 0], # v8 [0, 0, 0, 0, 0, 0, 0, 0, 1], # v15 [0, 0, 1, 0, 0, 0, 0, 0, 0], # v24 [0, 0, 1, 0, 0, 0, 0, 0, 0], # v35 [0, 0, 0, 0, 0, 1, 0, 0, 0], # t3 [0, 0, 0, 0, 0, 0, 1, 0, 0], # t8 [1, 0, 0, 0, 0, 0, 0, -4, 0], # t15 (c-) [1, 0, 0, 0, 0, 0, 0, 0, 0], # t24 [1, 0, 0, 0, 0, 0, 0, 0, 0], # t35 ] ) tensor = op.numpy_to_tensor(array.T) return tensor
[docs] class AddPhoton(MetaLayer): """ Changes the value of the photon component of the PDF to non-zero. The photon idx in the dimension-14 PDF basis of the FKTables is always index 0. In order to avoid bottlenecks, this layer can only compute the photon for a given fixed shape. In order to change the shape it is necessary to rebuild the photon. """ def __init__(self, photons, **kwargs): self._photons_generator = photons self._pdf_ph = None super().__init__(**kwargs)
[docs] def register_photon(self, xgrid): """Compute the photon array of shape (1, replicas, xgrid, 1) and set the layer to be rebuilt""" if self._photons_generator: self._pdf_ph = self._photons_generator(xgrid) self.built = False
[docs] def call(self, pdfs): if self._pdf_ph is None: return pdfs return op.concatenate([self._pdf_ph, pdfs[:, :, :, 1:]], axis=3)
[docs] class ObsRotation(MetaLayer): """ Rotation is a layer used to apply a rotation transformation input transform matrix needs to be np array of N_out*N_in so when the matrix multiplication has taken place you get N_out, ... tensor out. If input is a true rotation then N_out=N_in """ def __init__(self, transform_matrix, **kwargs): self.rotation = op.numpy_to_tensor(transform_matrix.T) super(MetaLayer, self).__init__(**kwargs)
[docs] def call(self, prediction_in): return op.tensor_product(prediction_in, self.rotation, axes=1)