

 	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials	Running fits
	Analysing results
	Adding new data
	Closure tests
	Special PDF sets
	Miscellaneous	How to list the available resources
	Obtaining the pseudodata used by an n3fit fit
	How to add a new type of plot or table in validphys
	How to add a new metadata group	Step 1: Choose a name for your grouping
	Step 2: Add the grouping and group name to the metadata (PLOTTING) file
	Step 3: Make sure the grouping is parsed from the metadata
	Step 4: Recompile, reinstall and profit

	How to build conda-packages
	How to run a Future Test

 NNPDF

 	
	Tutorials
	How to add a new metadata group
	
 View page source

How to add a new metadata group

In Data specification it is described how a user can define a custom
grouping at the level of the runcard, by specifying custom_group in each
dataset_input and then specifying metadata_group=custom_group. This is
great for testing, but what if you define a grouping that you want to reuse and
you want others to be able to use it easily as well?

The answer is to add that grouping to the metadata of the datasets, then
once the code is reinstalled the custom grouping will always be available.

Step 1: Choose a name for your grouping

The hardest part of any science research is to choose a name which is both
descriptive but also reflects your wit and intelligence. Failing the latter
try to choose a name which is suitably unique and possibly allows for newer
iterations in the future. An example of this would be the name given to the
grouping which groups data by the process type, according to the
theory uncertainties paper:
nnpdf31_process.
The suffix of ‘process’ indicates what the grouping is related to and the prefix
indicates that our hubris hasn’t prevented us from permitting the possibility
that we can come up with a more
refined version of this grouping in the future, which can have its own prefix.

Remember that each group within the grouping will also need its own name, so
try not to exhaust yourself too much before coming up with the group names as
well.

The metadata file is your canvas but with great power comes great
responsibility.

Step 2: Add the grouping and group name to the metadata (PLOTTING) file

Note

Throughout this section the PLOTTING file may be referred to as the
metadata.

Once you have a name for your grouping and a name for each of your groups you
can add these as key-value pairs to the PLOTTING files of each dataset for
which you want to be able to apply this grouping. The PLOTTING files are
found in the Git repository in nnpdfcpp/data/commondata and follow the naming
convention PLOTTING_<DATASET NAME>.yaml.

It’s a good idea to add
this to the PLOTTING file of all datasets if possible, or else anybody
who tries to use your grouping in the future is sure to get very frustrated.

Say I called my grouping nnpdf40_process and the group which a particular
dataset belongs to is DIS NC then I would add the following to the PLOTTING file

nnpdf40_process: DIS NC

At this stage it’s worth pointing out that it’s best that both grouping
and group names are naturally interpretable as a string.

Step 3: Make sure the grouping is parsed from the metadata

A perhaps surprising step in this tutorial is that you must tell the part of
the code which parses the metadata about your new key or else it will get
very upset.

This involves adding an attribute related to the new key to
validphys.plotoptions.core.PlottingOptions.
There are pre-existing examples that you can use as templates.
For the example used above I would have to add:

nnpdf40_process: str

which tells the code to look for an nnpdf40_process key within the metadata file and
to attempt to parse it as a string. We do not attribute a default value to this new key,
which implies that it must be provided within the metadata file.

In addition to this, you must add the new grouping to
validphys.plotoptions.core.PlotInfo as a keyword arguments of
the __init__ function and subsequently as an attribute of the class
as follows:

class PlotInfo:
 def __init__(
 self,
 kinlabels,
 dataset_label,
 *,
...
 nnpdf40_process,
...
 self.nnpdf40_process = nnpdf40_process

The keyword argument must be placed after the asterix as per standard python
syntax.

Note

It is possible to give a default value by setting a default in the
signature of the function. If you do not set a default then every single dataset
must have that key in its metadata. You may observe that experiment
and nnpdf31_process are required keys. Any dataset which does not
feature these keys in its metadata can be considered broken or not fully
implemented.

Step 4: Recompile, reinstall and profit

Now everything is in place, you just need to recompile and reinstall the code
which will put the updated metadata files in your environment. Following the
example used throughout I can now specify
metadata_group: nnpdf40_process and any action which leverages the
metadata grouping mechanism will now group datasets by the new key.

 Previous
 Next

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

