

 	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	validphys.closuretest package
	
 View page source

validphys.closuretest package

Submodules

validphys.closuretest.closure_checks module

closuretest/checks.py

Module containing checks specific to the closure tests.

	
validphys.closuretest.closure_checks.check_at_least_10_fits(fits)[source]
	

	
validphys.closuretest.closure_checks.check_fit_isclosure(fit)[source]
	Check the input fit is a closure test

	
validphys.closuretest.closure_checks.check_fits_areclosures(fits)[source]
	Check all fits are closures

	
validphys.closuretest.closure_checks.check_fits_different_filterseed(fits)[source]
	Input fits should have different filter seeds if they are being
used for multiple closure test studies, because in high-level hand-waving
terms the different level 1 shifts represents different
‘runs of the universe’!

	
validphys.closuretest.closure_checks.check_fits_have_same_basis(fits_basis)[source]
	Check the basis is the same for all fits

	
validphys.closuretest.closure_checks.check_fits_same_filterseed(fits)[source]
	Input fits should have the same filter seed if they are being compared

	
validphys.closuretest.closure_checks.check_fits_underlying_law_match(fits)[source]
	Check that the fits being compared have the same underlying law

	
validphys.closuretest.closure_checks.check_multifit_replicas(fits_pdf, _internal_max_reps, _internal_min_reps)[source]
	Checks that all the fit pdfs have the same number of replicas N_rep. Then
check that N_rep is greater than the smallest number of replicas used in
actions which subsample the replicas of each fit.

This check also has the secondary
effect of filling in the namespace key _internal_max_reps
which can be used to override the number of replicas used at the level of
the runcard, but by default get filled in as the number of replicas in each
fit.

	
validphys.closuretest.closure_checks.check_t0pdfset_matches_law(t0pdfset, fit)[source]
	

	
validphys.closuretest.closure_checks.check_t0pdfset_matches_multiclosure_law(multiclosure_underlyinglaw, t0set)[source]
	Checks that, if a multiclosure_underlyinglaw is present, it matches the t0set
Checks t0set instead of t0pdfset since different mechanisms can fill t0set

	
validphys.closuretest.closure_checks.check_use_fitcommondata(use_fitcommondata)[source]
	Base check that use_fitcommondata is being used, check should be used
with all actions which require comparison to fitcommondata

validphys.closuretest.closure_plots module

closuretest/plots.py

Plots of statistical estimators for closure tests

	
validphys.closuretest.closure_plots.errorbar_figure_from_table(df)[source]
	Given a table with even columns as central values as odd columns as errors
plot an errorbar plot

	
validphys.closuretest.closure_plots.plot_biases(biases_table)[source]
	Plot the bias of each experiment for all fits with bars. For information on
how biases is calculated see bias_experiment

	
validphys.closuretest.closure_plots.plot_delta_chi2(delta_chi2_bootstrap, fits)[source]
	Plots distributions of delta chi2 for each fit in fits.
Distribution is generated by bootstrapping. For more information
on delta chi2 see delta_chi2_bootstrap

	
validphys.closuretest.closure_plots.plot_fits_bootstrap_bias(fits_bootstrap_bias_table)[source]
	Plot the bias for each experiment for all fits as a point with an error bar,
where the error bar is given by bootstrapping the bias across replicas

The number of bootstrap samples can be controlled by the parameter bootstrap_samples

	
validphys.closuretest.closure_plots.plot_fits_bootstrap_variance(fits_bootstrap_variance_table)[source]
	Plot variance as error bars, with mean and central value calculated
from bootstrap sample

validphys.closuretest.closure_results module

closuretest/results.py

underlying actions to calculate closure test estimators plus some table actions

	
class validphys.closuretest.closure_results.BiasData(bias, ndata)
	Bases: tuple

	
bias
	Alias for field number 0

	
ndata
	Alias for field number 1

	
class validphys.closuretest.closure_results.VarianceData(variance, ndata)
	Bases: tuple

	
ndata
	Alias for field number 1

	
variance
	Alias for field number 0

	
validphys.closuretest.closure_results.bias_dataset(results, underlying_results, fit, use_fitcommondata)[source]
	Calculate the bias for a given dataset and fit. The bias is defined as
chi2 between the prediction from the underlying PDF (which was used to
generate the closure pseudodata), also known as level zero closure data, and
the central prediction calculated from the fitted PDF.

we require that use_fitcommondata is true because the generated closure data
is used to generate the multiplicative contributions to the covariance
matrix

	
validphys.closuretest.closure_results.bias_experiment(dataset_inputs_results, underlying_dataset_inputs_results, fit, use_fitcommondata)[source]
	Like bias_dataset but for a whole experiment.

	
validphys.closuretest.closure_results.biases_table(fits_experiments, fits_experiments_bias, fits, show_total: bool = False)[source]
	Creates a table with fits as the columns and the experiments from both
fits as the row index.

	
validphys.closuretest.closure_results.bootstrap_bias_experiment(dataset_inputs_results, underlying_dataset_inputs_results, bootstrap_samples=500)[source]
	Calculates bias as per bias_experiment but performs bootstrap sample
across replicas. note that bias_experiment returns a named tuple like
(unnormalised_bias, ndata) whereas this actions simply returns an array
boostrap_bias with length bootstrap_samples. Each element of
returned array is bias/n_data (bias normalised by number of datapoints)

	
validphys.closuretest.closure_results.bootstrap_variance_experiment(dataset_inputs_results, bootstrap_samples=500)[source]
	Calculate the variance as in variance_experiment but performs bootstrap
sample of the estimator. Returns an array of variance for each resample,
normalised to the number of data in the experiment.

	
validphys.closuretest.closure_results.delta_chi2_bootstrap(fits_level_1_noise, fits_exps_bootstrap_chi2_central, fits, use_fitcommondata)[source]
	Bootstraps delta chi2 for specified fits.
Delta chi2 measures whether the level one data is fitted better by
the underlying law or the specified fit, it is a measure of overfitting.

delta chi2 = (chi2(T[<f>], D_1) - chi2(T[f_in], D_1))/chi2(T[f_in], D_1)

where T[<f>] is central theory prediction from fit, T[f_in] is theory
prediction from t0 pdf (input) and D_1 is level 1 closure data

Exact details on delta chi2 can be found in 1410.8849 eq (28).

	
validphys.closuretest.closure_results.delta_chi2_table(fits_exps_chi2, fits_exps_level_1_noise, fits_name_with_covmat_label, fits_experiments, fits, use_fitcommondata)[source]
	Calculated delta chi2 per experiment and put in table
Here delta chi2 is just normalised by ndata and is equal to

delta_chi2 = (chi2(T[<f>], D_1) - chi2(T[f_in], D_1))/ndata

	
validphys.closuretest.closure_results.fit_underlying_pdfs_summary(fit, fitunderlyinglaw)[source]
	Returns a table with a single column for the fit with a row indication
the PDF used to generate the data and the t0 pdf

	
validphys.closuretest.closure_results.fits_bootstrap_bias_table(fits_experiments_bootstrap_bias, fits_name_with_covmat_label, fits_experiments, fits, use_fitcommondata)[source]
	Produce a table with bias for each experiment for each fit, along with
variance calculated from doing a bootstrap sample

	
validphys.closuretest.closure_results.fits_bootstrap_variance_table(fits_exps_bootstrap_var, fits_name_with_covmat_label, fits_experiments, fits, use_fitcommondata)[source]
	Produce a table with variance and its error. Variance is defined as

var = sum_ij E_rep[(E_rep[T_i], T_i) invcov_ij (E_rep[T_j], T_j)] / N_data

which is the expectation value across replicas of the chi2 between the central
theory predictions and replica theory predictions. It is the same as phi^2
and gives the variance of the theory predictions in units of the covariance
matrix, normalised by the number of data points.

The error is the standard deviation across bootstrap samples.

	
validphys.closuretest.closure_results.summarise_closure_underlying_pdfs(fits_underlying_pdfs_summary)[source]
	Collects the underlying pdfs for all fits and concatenates them into a single table

	
validphys.closuretest.closure_results.variance_dataset(results, fit, use_fitcommondata)[source]
	calculate the variance for a given dataset, which is the spread of
replicas measured in the space of the covariance matrix. Given by:

E_rep [(T - E_rep[T])_i C^{-1}_ij (T - E_rep[T])_j]

where E_rep is the expectation value across replicas. The quantity is the
same as squaring phi_data, however it is redefined here in a way which can
be made fully independent of the closure data. This is useful when checking
the variance of data which was not included in the fit.

	
validphys.closuretest.closure_results.variance_experiment(dataset_inputs_results, fit, use_fitcommondata)[source]
	Like variance_dataset but for a whole experiment

validphys.closuretest.multiclosure module

closuretest/multiclosure.py

Module containing all of the statistical estimators which are
averaged across multiple fits or a single replica proxy fit. The actions
in this module are used to produce results which are plotted in
multiclosure_output.py

	
class validphys.closuretest.multiclosure.BootstrappedTheoryResult(data)[source]
	Bases: object

Proxy class which mimics results.ThPredictionsResult so that
pre-existing bias/variance actions can be used with bootstrapped replicas

	
validphys.closuretest.multiclosure.bias_variance_resampling_data(internal_multiclosure_data_loader, n_fit_samples, n_replica_samples, bootstrap_samples=100, boot_seed=9689372, use_repeats=True)[source]
	Like ratio_n_dependence_dataset except for all data.

Notes

The bootstrap samples are seeded in this function. If this action is collected
over multiple experiments then the set of resamples all used corresponding
fits/replicas and can be added together.

	
validphys.closuretest.multiclosure.bias_variance_resampling_dataset(internal_multiclosure_dataset_loader, n_fit_samples, n_replica_samples, bootstrap_samples=100, boot_seed=9689372, use_repeats=True)[source]
	For a single dataset, create bootstrap distributions of bias and variance
varying the number of fits and replicas drawn for each resample. Return two
3-D arrays with dimensions

(number of n_rep samples, number of n_fit samples, n_boot)

filled with resampled bias and variance respectively. The number of bootstrap_samples
is 100 by default. The number of n_rep samples is determined by varying
n_rep between 10 and the number of replicas each fit has in intervals of 5.
This action requires that each fit has the same number of replicas which also
must be at least 10. The number of n_fit samples is determined analogously to
the number of n_rep samples, also requiring at least 10 fits.

	Returns
	resamples – tuple of two 3-D arrays with resampled bias and variance respectively for
each n_rep samples and each n_fit samples

	Return type
	tuple

Notes

The bootstrap samples are seeded in this function. If this action is collected
over multiple datasets then the set of resamples all used corresponding replicas
and fits.

	
validphys.closuretest.multiclosure.bias_variance_resampling_total(exps_bias_var_resample)[source]
	Sum the bias_variance_resampling_data for all experiments, giving
the total bias and variance resamples. This relies on the bootstrap seed being
the same for all experiments, such that the fits/replicas are the same, and
there being no inter-experiment correlations.

	
validphys.closuretest.multiclosure.data_replica_and_central_diff(internal_multiclosure_data_loader, diagonal_basis=True)[source]
	Like dataset_replica_and_central_diff but for all data

	
validphys.closuretest.multiclosure.data_xi(data_replica_and_central_diff)[source]
	Like dataset_xi but for all data

	
validphys.closuretest.multiclosure.dataset_fits_bias_replicas_variance_samples(internal_multiclosure_dataset_loader, _internal_max_reps=None, _internal_min_reps=20)[source]
	For a single dataset, calculate the samples of chi2-quantities which
are used to calculate the bias and variance for each fit. The output of this
function is similar to fits_dataset_bias_variance() except that
the mean is not taken across replicas when calculating the mean squared
difference between replica predictions and central predictions and instead
the results are concatenated. The mean of this array would be the expected
value of the variance across fits.

Return tuple (fits_bias, fits_replica_variance, n_data), where fits_bias is
1-D array of length N_fits and fits_replica_variance is 1-D array length
N_fits * N_replicas.

For more information on bias see closuretest.bias_dataset and for more information
on variance see validphys.closuretest.closure_results.variance_dataset().

The fits should each have the same underlying law and t0 PDF, but have
different filterseeds, so that the level 1 shift is different.

Can control the number of replicas taken from each fit with
_internal_max_reps.

	
validphys.closuretest.multiclosure.dataset_inputs_fits_bias_replicas_variance_samples(internal_multiclosure_data_loader, _internal_max_reps=None, _internal_min_reps=20)[source]
	

	
validphys.closuretest.multiclosure.dataset_replica_and_central_diff(internal_multiclosure_dataset_loader, diagonal_basis=True)[source]
	For a given dataset calculate sigma, the RMS difference between
replica predictions and central predictions, and delta, the difference
between the central prediction and the underlying prediction.

If diagonal_basis is True he differences are calculated in the
basis which would diagonalise the dataset’s covariance matrix. This is the
default behaviour.

	
validphys.closuretest.multiclosure.dataset_xi(dataset_replica_and_central_diff)[source]
	Take sigma and delta for a dataset, where sigma is the RMS difference
between replica predictions and central predictions, and delta is the
difference between the central prediction and the underlying prediction.

Then the indicator function is evaluated elementwise for sigma and delta

\(I_{[-\sigma_j, \sigma_j]}(\delta_j)\)

which is 1 when \(|\delta_j| < \sigma_j\) and 0 otherwise. Finally, take the
mean across fits.

	Returns
	xi_1sigma_i – a 1-D array where each element is the value of xi_1sigma for that
particular eigenvector. We note that the eigenvectors are ordered by
ascending eigenvalues

	Return type
	np.array

	
validphys.closuretest.multiclosure.expected_data_bias_variance(fits_data_bias_variance)[source]
	Like expected_dataset_bias_variance except for all data

	
validphys.closuretest.multiclosure.expected_dataset_bias_variance(fits_dataset_bias_variance)[source]
	For a given dataset calculate the expected bias and variance across fits
then return tuple (expected bias, expected variance, n_data)

	
validphys.closuretest.multiclosure.expected_total_bias_variance(fits_total_bias_variance)[source]
	Like expected_dataset_bias_variance except for all data

	
validphys.closuretest.multiclosure.experiments_bootstrap_expected_xi(experiments_bootstrap_sqrt_ratio)[source]
	Calculate a bootstrap resampling of the expected xi from
experiments_bootstrap_sqrt_ratio, using the same formula as
validphys.closuretest.multiclosure_output.expected_xi_from_bias_variance().

	
validphys.closuretest.multiclosure.experiments_bootstrap_ratio(experiments_bootstrap_bias_variance, total_bootstrap_ratio)[source]
	Returns a bootstrap resampling of the ratio of bias/variance for
each experiment and total. Total is calculated as sum(bias)/sum(variance)
where each sum refers to the sum across experiments.

	Returns
	ratios_resampled – list of bootstrap samples of ratio of bias/var, length of list is
len(experiments) + 1 because the final element is the total ratio
resampled.

	Return type
	list

	
validphys.closuretest.multiclosure.experiments_bootstrap_sqrt_ratio(experiments_bootstrap_ratio)[source]
	Square root of experiments_bootstrap_ratio

	
validphys.closuretest.multiclosure.fits_bootstrap_data_bias_variance(internal_multiclosure_data_loader, fits, _internal_max_reps=None, _internal_min_reps=20, bootstrap_samples=100, boot_seed=9689372)[source]
	Perform bootstrap resample of fits_data_bias_variance, returns
tuple of bias_samples, variance_samples where each element is a 1-D np.array
of length bootstrap_samples. The elements of the arrays are bootstrap samples
of bias and variance respectively.

	
validphys.closuretest.multiclosure.fits_bootstrap_data_xi(internal_multiclosure_data_loader, fits, _internal_max_reps=None, _internal_min_reps=20, bootstrap_samples=100, boot_seed=9689372)[source]
	Perform bootstrap resample of data_xi, returns a list
where each element is an independent resampling of data_xi.

For more information on bootstrapping see _bootstrap_multiclosure_fits.
For more information on xi see dataset_xi.

	
validphys.closuretest.multiclosure.fits_data_bias_variance(internal_multiclosure_data_loader, _internal_max_reps=None, _internal_min_reps=20)[source]
	Like fits_dataset_bias_variance but for all data

	
validphys.closuretest.multiclosure.fits_dataset_bias_variance(internal_multiclosure_dataset_loader, _internal_max_reps=None, _internal_min_reps=20)[source]
	For a single dataset, calculate the bias and variance for each fit
and return tuple (bias, variance, n_data), where bias and variance are
1-D arrays of length len(fits).

For more information on bias see closuretest.bias_dataset and for more information
on variance see validphys.closuretest.closure_results.variance_dataset().

The fits should each have the same underlying law and t0 PDF, but have
different filterseeds, so that the level 1 shift is different.

Can control the number of replicas taken from each fit with
_internal_max_reps.

	
validphys.closuretest.multiclosure.fits_total_bias_variance(fits_experiments_bias_variance)[source]
	Like fits_dataset_bias_variance except for all data, assumes there are
no inter-experiment correlations. That assumption is broken if a theory
covariance matrix is used.

	
validphys.closuretest.multiclosure.groups_bootstrap_expected_xi(groups_bootstrap_sqrt_ratio)[source]
	Like experiments_bootstrap_expected_xi() but for metadata groups.

	
validphys.closuretest.multiclosure.groups_bootstrap_ratio(groups_bootstrap_bias_variance, total_bootstrap_ratio)[source]
	Like experiments_bootstrap_ratio() but for metadata groups.

	
validphys.closuretest.multiclosure.groups_bootstrap_sqrt_ratio(groups_bootstrap_ratio)[source]
	Like experiments_bootstrap_sqrt_ratio() but for metadata groups.

	
validphys.closuretest.multiclosure.internal_multiclosure_data_loader(data, fits_pdf, multiclosure_underlyinglaw, fits, dataset_inputs_t0_covmat_from_systematics)[source]
	Like internal_multiclosure_dataset_loader except for all data

	
validphys.closuretest.multiclosure.internal_multiclosure_dataset_loader(dataset, fits_pdf, multiclosure_underlyinglaw, fits, t0_covmat_from_systematics)[source]
	Internal function for loading multiple theory predictions for a given
dataset and a single covariance matrix using underlying law as t0 PDF,
which is for use with multiclosure statistical estimators. Avoiding memory
issues from caching the load function of a group of datasets.

	Parameters
		dataset ((DataSetSpec, DataGroupSpec)) – dataset for which the theory predictions and t0 covariance matrix
will be loaded. Note that due to the structure of validphys this
function can be overloaded to accept a DataGroupSpec.

	fits_pdf (list) – list of PDF objects produced from performing multiple closure tests
fits. Each fit should have a different filterseed but the same
underlying law used to generate the pseudodata.

	multiclosure_underlyinglaw (PDF) – PDF used to generate the pseudodata which the closure tests fitted. This
is inferred from the fit runcards.

	fits (list) – list of closure test fits, used to collect fits_pdf

	Returns
	
multiclosure_results – a tuple of length 4 containing all necessary dependencies of multiclosure
statistical estimators in order:

closure fits theory predictions,
underlying law theory predictions,
covariance matrix,
sqrt covariance matrix

	Return type
	tuple

Notes

This function replicates behaviour found elsewhere in validphys, the reason
for this is that due to the default caching behaviour one can run into
memory issues when loading the theory predictions for the amount of fits
typically used in these studies.

	
validphys.closuretest.multiclosure.n_fit_samples(fits)[source]
	Return a range object where each item is a number of fits to use for
resampling a multiclosure quantity.

It is determined by varying n_fits between 10 and number of fits provided by
user in steps of 5. User must provide at least 10 fits.

	
validphys.closuretest.multiclosure.n_replica_samples(fits_pdf, _internal_max_reps=None, _internal_min_reps=20)[source]
	Return a range object where each item is a number of replicas to use for
resampling a multiclosure quantity.

It is determined by varying n_reps between 20 and number of replicas that each
provided closure fit has. All provided fits must have the same number of
replicas and that number must be at least 20.

The number of replicas used from each fit can be overridden by supplying
_internal_max_reps.

	
validphys.closuretest.multiclosure.total_bootstrap_ratio(experiments_bootstrap_bias_variance)[source]
	Calculate the total bootstrap ratio for all data. Leverages the
fact that the covariance matrix is block diagonal in experiments so

Total ratio = sum(bias) / sum(variance)

Which is valid provided there are no inter-experimental correlations.

	Returns
	bias_var_total – tuple of the total bias and variance

	Return type
	tuple

	
validphys.closuretest.multiclosure.total_bootstrap_xi(experiments_bootstrap_xi)[source]
	Given the bootstrap samples of xi_1sigma for all experiments,
concatenate the result to get xi_1sigma for all data points in a single
array

	
validphys.closuretest.multiclosure.total_expected_xi_resample(bias_variance_resampling_total)[source]
	Using the bias and variance resample, return a resample of expected xi
using the method outlined in
validphys.closuretest.multiclosure_output.expected_xi_from_bias_variance().

The general concept is based on assuming all of the distributions are
gaussians and using the ratio of bias/variance to predict the corresponding
integral. To see a more in depth explanation, see
validphys.closuretest.multiclosure_output.expected_xi_from_bias_variance().

	
validphys.closuretest.multiclosure.total_xi_resample(exps_xi_resample)[source]
	Concatenate the xi for each datapoint for all data

	
validphys.closuretest.multiclosure.xi_resampling_data(internal_multiclosure_data_loader, n_fit_samples, n_replica_samples, bootstrap_samples=100, boot_seed=9689372, use_repeats=True)[source]
	Like xi_resampling_dataset except for all data.

Notes

The bootstrap samples are seeded in this function. If this action is collected
over multiple experiments then the set of resamples all used corresponding replicas
and can be added together.

	
validphys.closuretest.multiclosure.xi_resampling_dataset(internal_multiclosure_dataset_loader, n_fit_samples, n_replica_samples, bootstrap_samples=100, boot_seed=9689372, use_repeats=True)[source]
	For a single dataset, create bootstrap distributions of xi_1sigma
varying the number of fits and replicas drawn for each resample. Return a
4-D array with dimensions

(number of n_rep samples, number of n_fit samples, n_boot, n_data)

filled with resampled bias and variance respectively. The number of bootstrap_samples
is 100 by default. The number of n_rep samples is determined by varying
n_rep between 10 and the number of replicas each fit has in intervals of 5.
This action requires that each fit has the same number of replicas which also
must be at least 10. The number of n_fit samples is determined analogously to
the number of n_rep samples, also requiring at least 10 fits.

	Returns
	resamples – 4-D array with resampled xi for each n_rep samples and each n_fit samples

	Return type
	array

Notes

The bootstrap samples are seeded in this function. If this action is collected
over multiple datasets then the set of resamples all used corresponding replicas.

validphys.closuretest.multiclosure_output module

multiclosure_output

Module containing the actions which produce some output in validphys
reports i.e figures or tables for multiclosure estimators in the space of
data.

	
validphys.closuretest.multiclosure_output.compare_measured_expected_xi(fits_measured_xi, expected_xi_from_bias_variance)[source]
	Table with measured xi and expected xi from bias/variance for each
experiment and total. For details on expected xi, see
expected_xi_from_bias_variance. For more details on measured xi see
fits_measured_xi.

	
validphys.closuretest.multiclosure_output.dataset_ratio_error_finite_effects(bias_variance_resampling_dataset, n_fit_samples, n_replica_samples)[source]
	For a single dataset vary number of fits and number of replicas used to perform
bootstrap sample of expected bias and variance. For each combination of
n_rep and n_fit tabulate the std deviation across bootstrap samples of

ratio = bias / variance

The resulting table gives and approximation of how error varies with
number of fits and number of replicas for each dataset.

	
validphys.closuretest.multiclosure_output.dataset_std_xi_error_finite_effects(xi_resampling_dataset, n_fit_samples, n_replica_samples)[source]
	For a single dataset vary number of fits and number of replicas used to perform
bootstrap sample of xi. Take the standard deviation of xi across datapoints
(note that points here refers to points in the basis which diagonalises the
covmat) and then tabulate the standard deviation of std(xi_1sigma) across
bootstrap samples.

	
validphys.closuretest.multiclosure_output.dataset_std_xi_means_finite_effects(xi_resampling_dataset, n_fit_samples, n_replica_samples)[source]
	For a single dataset vary number of fits and number of replicas used to perform
bootstrap sample of xi. Take the standard deviation of xi across datapoints
(note that points here refers to points in the basis which diagonalises the
covmat) and then tabulate the mean of std(xi_1sigma) across
bootstrap samples.

	
validphys.closuretest.multiclosure_output.dataset_xi_error_finite_effects(xi_resampling_dataset, n_fit_samples, n_replica_samples)[source]
	For a single dataset vary number of fits and number of replicas used to perform
bootstrap sample of xi. Take the mean of xi across datapoints (note that points
here refers to points in the basis which diagonalises the covmat) and then
tabulate the standard deviation of xi_1sigma across bootstrap samples.

	
validphys.closuretest.multiclosure_output.dataset_xi_means_finite_effects(xi_resampling_dataset, n_fit_samples, n_replica_samples)[source]
	For a single dataset vary number of fits and number of replicas used to perform
bootstrap sample of xi. Take the mean of xi across datapoints (note that points
here refers to points in the basis which diagonalises the covmat) and then
tabulate the mean of xi_1sigma across bootstrap samples.

	
validphys.closuretest.multiclosure_output.datasets_bias_variance_ratio(datasets_expected_bias_variance, each_dataset)[source]
	For each dataset calculate the expected bias and expected variance
across fits, then calculate the ratio

ratio = expected bias / expected variance

and tabulate the results.

This gives an idea of how faithful uncertainties are for a set of
datasets.

Notes

If uncertainties are faithfully estimated then we would expect to see
ratio = 1. We should note that the ratio is a squared quantity and
sqrt(ratio) is more appropriate for seeing how much uncertainties are
over or underestimated. An over-estimate of uncertainty leads to
sqrt(ratio) < 1, similarly an under-estimate of uncertainty leads to
sqrt(ratio) > 1.

	
validphys.closuretest.multiclosure_output.expected_xi_from_bias_variance(sqrt_experiments_bias_variance_ratio)[source]
	Given the sqrt_experiments_bias_variance_ratio calculate a predicted
value of \(\xi_{1 \sigma}\) for each experiment. The predicted value is based of
the assumption that the difference between replica and central prediction
and the difference between central prediction and underlying prediction are
both gaussians centered on zero.

For example, if sqrt(expected bias/expected variance) is 0.5, then we would
expect xi_{1 sigma} to be given by performing an integral of the
distribution of

diffs = (central - underlying predictions)

over the domain defined by the variance. In this case the sqrt(variance) is
twice as large as the sqrt(bias) which is the same as integrating a normal
distribution mean = 0, std = 1 over the interval [-2, 2], given by

integral = erf(2/sqrt(2))

where erf is the error function.

In general the equation is

integral = erf(sqrt(variance / (2*bias)))

	
validphys.closuretest.multiclosure_output.experiments_bias_variance_ratio(experiments_expected_bias_variance, experiments_data, expected_total_bias_variance)[source]
	Like datasets_bias_variance_ratio except for each experiment. Also
calculate and tabulate

(total expected bias) / (total expected variance)

where the total refers to summing over all experiments.

	
validphys.closuretest.multiclosure_output.experiments_bias_variance_table(experiments_expected_bias_variance, group_dataset_inputs_by_experiment, expected_total_bias_variance)[source]
	Tabulate the values of bias and variance for each experiment as well
as the sqrt ratio of the two as in
:py:func`sqrt_experiments_bias_variance_ratio`. Used as a performance
indicator.

	
validphys.closuretest.multiclosure_output.experiments_bootstrap_expected_xi_table(experiments_bootstrap_expected_xi, experiments_data)[source]
	Tabulate the mean and standard deviation across bootstrap samples of the
expected xi calculated from the ratio of bias/variance. Returns a table with
two columns, for the bootstrap mean and standard deviation
and a row for each experiment plus the total across all experiments.

	
validphys.closuretest.multiclosure_output.experiments_bootstrap_sqrt_ratio_table(experiments_bootstrap_sqrt_ratio, experiments_data)[source]
	Given experiments_bootstrap_sqrt_ratio, which a bootstrap
resampling of the sqrt(bias/variance) for each experiment and the total
across all data, tabulate the mean and standard deviation across bootstrap
samples.

	
validphys.closuretest.multiclosure_output.experiments_bootstrap_xi_comparison(experiments_bootstrap_xi_table, experiments_bootstrap_expected_xi_table)[source]
	Table comparing the mean and standard deviation across bootstrap samples of
the measured xi_1sigma and the expected xi_1sigma calculated from
bias/variance.

	
validphys.closuretest.multiclosure_output.experiments_bootstrap_xi_table(experiments_bootstrap_xi, experiments_data, total_bootstrap_xi)[source]
	Tabulate the mean and standard deviation of xi_1sigma across bootstrap
samples. Note that the mean has already be taken across data points
(or eigenvectors in the basis which diagonalises the covariance
matrix) for each individual bootstrap sample.

Tabulate the results for each experiment and for the total xi across all data.

	
validphys.closuretest.multiclosure_output.fits_measured_xi(experiments_xi_measured, experiments_data)[source]
	Tabulate the measure value of xi_{1sigma} for each experiment, as
calculated by data_xi (collected over experiments). Note that the mean is
taken across eigenvectors of the covariance matrix.

	
validphys.closuretest.multiclosure_output.groups_bootstrap_expected_xi_table(groups_bootstrap_expected_xi, groups_data)[source]
	Like experiments_bootstrap_expected_xi_table() but for metadata
groups.

	
validphys.closuretest.multiclosure_output.groups_bootstrap_sqrt_ratio_table(groups_bootstrap_sqrt_ratio, groups_data)[source]
	Like experiments_bootstrap_sqrt_ratio_table() but for
metadata groups.

	
validphys.closuretest.multiclosure_output.groups_bootstrap_xi_comparison(groups_bootstrap_xi_table, groups_bootstrap_expected_xi_table)[source]
	Like experiments_bootstrap_xi_comparison() but for metadata
groups.

	
validphys.closuretest.multiclosure_output.groups_bootstrap_xi_table(groups_bootstrap_xi, groups_data, total_bootstrap_xi)[source]
	Like experiments_bootstrap_xi_table() but for metadata groups.

	
validphys.closuretest.multiclosure_output.plot_bias_variance_distributions(experiments_fits_bias_replicas_variance_samples, group_dataset_inputs_by_experiment)[source]
	For each experiment, plot the distribution across fits of bias
and the distribution across fits and replicas of

fit_rep_var = (E[g] - g)_i inv(cov)_ij (E[g] - g)_j

where g is the replica prediction for fit l, replica k and E[g] is the
mean across replicas of g for fit l.

	
validphys.closuretest.multiclosure_output.plot_data_central_diff_histogram(experiments_replica_central_diff)[source]
	Histogram of the difference between central prediction
and underlying law prediction normalised by the corresponding replica
standard deviation by concatenating the difference across all data. plot a
scaled gaussian for reference. Total xi is the number of central differences
which fall within the 1-sigma confidence interval of the scaled gaussian.

	
validphys.closuretest.multiclosure_output.plot_data_fits_bias_variance(fits_data_bias_variance, data)[source]
	Like plot_dataset_fits_bias_variance but for all data. Can use
alongside group_dataset_inputs_by_experiment to plot for each experiment.

	
validphys.closuretest.multiclosure_output.plot_data_xi(data_xi, data)[source]
	Like plot_dataset_xi except for all data. Can be used alongside
group_dataset_inputs_by_experiment to plot for each experiment.

	
validphys.closuretest.multiclosure_output.plot_data_xi_histogram(data_xi, data)[source]
	Like plot_dataset_xi_histogram but for all data. Can be used alongside
group_dataset_inputs_by_experiment to plot for each experiment.

	
validphys.closuretest.multiclosure_output.plot_dataset_fits_bias_variance(fits_dataset_bias_variance, dataset)[source]
	For a set of closure fits, calculate the bias and variance across fits
and then plot scatter points so we can see the distribution of each quantity
with fits. The spread of the variance across fits is assumed to be small
compared to the spread of the biases, deviation from this assumption could
suggest that there are finite size effects due to too few replicas.

	
validphys.closuretest.multiclosure_output.plot_dataset_xi(dataset_xi, dataset)[source]
	For a given dataset, plot the value of xi_{1 sigma} for each eigenvector
of the covariance matrix, along with the expected value of xi_{1 sigma}
if the replicas distribution perfectly matches the central distribution
(0.68). In the legend include the mean across eigenvectors.

	
validphys.closuretest.multiclosure_output.plot_dataset_xi_histogram(dataset_xi, dataset)[source]
	For a given dataset, bin the values of xi_{1 sigma} for each eigenvector
of the covariance matrix, plot as a histogram with a vertical line for the
expected value: 0.68. In the legend print the mean and standard deviation
of the distribution.

	
validphys.closuretest.multiclosure_output.plot_experiments_sqrt_ratio_bootstrap_distribution(experiments_bootstrap_sqrt_ratio, experiments_data)[source]
	Plots a histogram for each experiment and the total, showing the
distribution of bootstrap samples. Takes the mean and std deviation of the
bootstrap sample and plots the corresponding scaled normal distribution
for comparison. The limits are set to be +/- 3 std deviations of the mean.

	
validphys.closuretest.multiclosure_output.plot_experiments_xi_bootstrap_distribution(experiments_bootstrap_xi, total_bootstrap_xi, experiments_data)[source]
	Similar to plot_sqrt_ratio_bootstrap_distribution() except plots
the bootstrap distribution of xi_1sigma, along with a corresponding
scaled gaussian, for each experiment (and for all data).

	
validphys.closuretest.multiclosure_output.plot_total_fits_bias_variance(fits_total_bias_variance)[source]
	Like plot_dataset_fits_bias_variance but for the total bias/variance
for all data, with the total calculated by summing up contributions from each
experiment.

	
validphys.closuretest.multiclosure_output.sqrt_datasets_bias_variance_ratio(datasets_bias_variance_ratio)[source]
	Given datasets_bias_variance_ratio take the sqrt and tabulate the
results. This gives an idea of how
faithful the uncertainties are in sensible units. As noted in
datasets_bias_variance_ratio, bias/variance is a squared quantity and
so when considering how much uncertainty has been over or underestimated
it is more natural to consider sqrt(bias/variance).

	
validphys.closuretest.multiclosure_output.sqrt_experiments_bias_variance_ratio(experiments_bias_variance_ratio)[source]
	Like sqrt_datasets_bias_variance_ratio except for each experiment.

	
validphys.closuretest.multiclosure_output.total_bias_variance_ratio(experiments_bias_variance_ratio, datasets_bias_variance_ratio, experiments_data)[source]
	Combine datasets_bias_variance_ratio and experiments_bias_variance_ratio
into single table with MultiIndex of experiment and dataset.

	
validphys.closuretest.multiclosure_output.total_expected_xi_error_finite_effects(total_expected_xi_resample, n_fit_samples, n_replica_samples)[source]
	Given the resampled ratio of bias/variance, returns table of mean of
resampled expected xi across bootstrap samples.

See expected_xi_from_bias_variance() for more details on how to calculate
expected xi.

	
validphys.closuretest.multiclosure_output.total_expected_xi_means_finite_effects(total_expected_xi_resample, n_fit_samples, n_replica_samples)[source]
	Given the resampled ratio of bias/variance, returns table of mean of
resampled expected xi across bootstrap samples.

See expected_xi_from_bias_variance for more details on how to calculate
expected xi.

	
validphys.closuretest.multiclosure_output.total_ratio_error_finite_effects(bias_variance_resampling_total, n_fit_samples, n_replica_samples)[source]
	Like dataset_ratio_relative_error_finite_effects except for the total
bias / variance (across all data).

	
validphys.closuretest.multiclosure_output.total_ratio_means_finite_effects(bias_variance_resampling_total, n_fit_samples, n_replica_samples)[source]
	Vary number of fits and number of replicas used to perform
bootstrap sample of expected bias and variance. For each combination of
n_rep and n_fit tabulate the the mean across bootstrap samples of

ratio = total bias / total variance

which can give context to total_ratio_relative_error_finite_effects.

	
validphys.closuretest.multiclosure_output.total_std_xi_error_finite_effects(exps_xi_resample, n_fit_samples, n_replica_samples)[source]
	For all data vary number of fits and number of replicas used to perform
bootstrap sample of xi. Take the std deviation of xi across datapoints
(note that points here refers to points in the basis which diagonalises
the covmat) and then tabulate the mean of std(xi_1sigma) across bootstrap
samples.

	
validphys.closuretest.multiclosure_output.total_std_xi_means_finite_effects(exps_xi_resample, n_fit_samples, n_replica_samples)[source]
	For all data vary number of fits and number of replicas used to perform
bootstrap sample of xi. Take the std deviation of xi across datapoints
(note that points here refers to points in the basis which diagonalises the
covmat) and then tabulate the standard deviation of std(xi_1sigma) across
bootstrap samples.

	
validphys.closuretest.multiclosure_output.total_xi_error_finite_effects(total_xi_resample, n_fit_samples, n_replica_samples)[source]
	For all data vary number of fits and number of replicas used to perform
bootstrap sample of xi. Take the mean of xi across datapoints (note that points
here refers to points in the basis which diagonalises the covmat) and then
tabulate the standard deviation of xi_1sigma across bootstrap samples.

	
validphys.closuretest.multiclosure_output.total_xi_means_finite_effects(total_xi_resample, n_fit_samples, n_replica_samples)[source]
	For all data vary number of fits and number of replicas used to perform
bootstrap sample of xi. Take the mean of xi across datapoints (note that points
here refers to points in the basis which diagonalises the covmat) and then
tabulate the standard deviation of xi_1sigma across bootstrap samples.

validphys.closuretest.multiclosure_pdf module

multiclosure_pdf.py

Module containing all of the actions related to statistical estimators across
multiple closure fits or proxy fits defined in PDF space. The actions
in this module are used to produce results which are plotted in
multiclosure_pdf_output.py

	
validphys.closuretest.multiclosure_pdf.bootstrap_pdf_differences(fits_xi_grid_values, underlying_xi_grid_values, multiclosure_underlyinglaw, rng)[source]
	Generate a single bootstrap sample of pdf_central_difference and
pdf_replica_difference given the multiclosure fits grid values
(fits_xi_grid_values); the underlying law grid values and the underlying
law; and a numpy random state which is used to generate random indices
for bootstrap sample. The bootstrap does include repeats and has the same
number of fits and replicas as the original fits_xi_grid_values which is
being resampled.

	Returns
	pdf_difference – a tuple of 2 lists: the central differences and the replica
differences. Each list is n_fits long and each element is a resampled
differences array for a randomly selected fit, randomly selected
replicas.

	Return type
	tuple

	
validphys.closuretest.multiclosure_pdf.fits_bootstrap_pdf_expected_xi(fits_bootstrap_pdf_sqrt_ratio)[source]
	Using fits_bootstrap_pdf_sqrt_ratio calculate a bootstrap of the expected
xi using the same procedure as in
validphys.closuretest.multiclosure_output.expected_xi_from_bias_variance().

	
validphys.closuretest.multiclosure_pdf.fits_bootstrap_pdf_ratio(fits_xi_grid_values, underlying_xi_grid_values, multiclosure_underlyinglaw, multiclosure_nx=4, n_boot=100, boot_seed=9689372)[source]
	Perform a bootstrap sampling across fits and replicas of the sqrt ratio,
by flavour and total and then tabulate the mean and error

	
validphys.closuretest.multiclosure_pdf.fits_bootstrap_pdf_sqrt_ratio(fits_bootstrap_pdf_ratio)[source]
	Take the square root of fits_bootstrap_pdf_ratio

	
validphys.closuretest.multiclosure_pdf.fits_correlation_matrix_totalpdf(fits_covariance_matrix_totalpdf)[source]
	Given the fits_covariance_matrix_totalpdf, returns the corresponding
correlation matrix

	
validphys.closuretest.multiclosure_pdf.fits_covariance_matrix_by_flavour(fits_replica_difference)[source]
	Given a set of PDF grids from multiple closure tests, obtain an estimate
of the covariance matrix for each flavour separately, return as a list of
covmats

	
validphys.closuretest.multiclosure_pdf.fits_covariance_matrix_totalpdf(fits_replica_difference, multiclosure_nx=4)[source]
	Given a set of PDF grids from multiple closure tests, obtain an estimate
of the covariance matrix allowing for correlations across flavours

	
validphys.closuretest.multiclosure_pdf.fits_pdf_flavour_ratio(fits_sqrt_covmat_by_flavour, fits_central_difference, fits_replica_difference)[source]
	Calculate the bias (chi2 between central PDF and underlying PDF)
for each flavour and the variance (mean chi2 between replica and central PDF),
then return a numpy array with shape (flavours, 2) with second axis being
bias, variance

	
validphys.closuretest.multiclosure_pdf.fits_pdf_total_ratio(fits_central_difference, fits_replica_difference, fits_covariance_matrix_totalpdf, multiclosure_nx=4)[source]
	Calculate the total bias and variance for all flavours and x allowing for
correlations across flavour.

Returns:

	ratio_data: tuple
	required data for calculating mean(bias) over mean(variance) across fits
in form of tuple (bias, variance)

	
validphys.closuretest.multiclosure_pdf.fits_sqrt_covmat_by_flavour(fits_covariance_matrix_by_flavour)[source]
	For each flavour covariance matrix calculate the sqrt covmat
(cholesky lower triangular)

	
validphys.closuretest.multiclosure_pdf.internal_nonsinglet_xgrid(multiclosure_nx=4)[source]
	Given the number of x points, set up the xgrid for flavours which
are not singlet or gluon, defined as being linearly spaced points between
0.1 and 0.5

	
validphys.closuretest.multiclosure_pdf.internal_singlet_gluon_xgrid(multiclosure_nx=4)[source]
	Given the number of x points, set up the singlet and gluon xgrids,
which are defined as half the points being logarithmically spaced
between 10^-3 and 0.1 and the other half of the points being linearly
spaced between 0.1 and 0.5

	
validphys.closuretest.multiclosure_pdf.pdf_central_difference(xi_grid_values, underlying_xi_grid_values, multiclosure_underlyinglaw)[source]
	Calculate the difference between underlying law and central PDF for,
specifically:

underlying_grid - mean(grid_vals)

where mean is across replicas.

Returns:

	diffs: np.array
	array of diffs with shape (flavour, x)

	
validphys.closuretest.multiclosure_pdf.pdf_replica_difference(xi_grid_values)[source]
	Calculate the difference between the central PDF and the replica PDFs,
specifically:

mean(grid_vals) - grid_vals

where the mean is across replicas.

Returns:

	diffs: np.array
	array of diffs with shape (replicas, flavour, x)

	
validphys.closuretest.multiclosure_pdf.replica_and_central_diff_totalpdf(fits_replica_difference, fits_central_difference, fits_covariance_matrix_totalpdf, multiclosure_nx=4, use_x_basis=False)[source]
	Calculate sigma and delta, like xi_flavour_x() but return
before calculating xi.

	
validphys.closuretest.multiclosure_pdf.underlying_xi_grid_values(multiclosure_underlyinglaw: ~validphys.core.PDF, Q: (<class 'float'>, <class 'int'>), internal_singlet_gluon_xgrid, internal_nonsinglet_xgrid)[source]
	Like xi_pdfgrids but setting the PDF as the underlying law, extracted
from a set of fits

	
validphys.closuretest.multiclosure_pdf.xi_flavour_x(fits_replica_difference, fits_central_difference, fits_covariance_matrix_by_flavour, use_x_basis=False)[source]
	For a set of fits calculate the indicator function

I_{[-sigma, sigma]}(delta)

where sigma is the RMS difference between central and replicas PDF
and delta is the difference between central PDF and underlying law.

The differences are all rotated to basis which diagonalises the covariance
matrix that was estimated from the super set of all fit replicas.

Finally take the mean across fits to get xi in flavour and x.

	
validphys.closuretest.multiclosure_pdf.xi_grid_values(xi_pdfgrids)[source]
	Grid values from the xi_pdfgrids concatenated as single numpy array

	
validphys.closuretest.multiclosure_pdf.xi_pdfgrids(pdf: ~validphys.core.PDF, Q: (<class 'float'>, <class 'int'>), internal_singlet_gluon_xgrid, internal_nonsinglet_xgrid)[source]
	Generate PDF grids which are required for calculating xi in PDF space
in the NN31IC basis, excluding the charm. We want to specify different xgrids
for different flavours to avoid sampling PDFs in deep extrapolation regions.
The limits are chosen to achieve this and specifically they are chosen to be:

gluon and singlet: 10^-3 < x < 0.5
other non-singlets: 0.1 < x < 0.5

	Returns
	
	tuple of xplotting_grids, one for gluon and singlet and one for other

	non-singlets

	
validphys.closuretest.multiclosure_pdf.xi_totalpdf(replica_and_central_diff_totalpdf)[source]
	Like xi_flavour_x() except calculate the total xi across flavours and x
accounting for correlations

validphys.closuretest.multiclosure_pdf_output module

multiclosure_pdf_output.py

Module containing all of the plots and tables for multiclosure estimators in
PDF space.

	
validphys.closuretest.multiclosure_pdf_output.fits_bootstrap_pdf_compare_xi_to_expected(fits_bootstrap_pdf_expected_xi_table, fits_bootstrap_pdf_xi_table)[source]
	Table comparing the mean and standard deviation across bootstrap samples
of the measured value of xi to the value calculated from bias/variance
in PDF space. This is done for each flavour and for the total across all
flavours accounting for correlations.

	
validphys.closuretest.multiclosure_pdf_output.fits_bootstrap_pdf_expected_xi_table(fits_bootstrap_pdf_expected_xi)[source]
	Tabulate the mean and standard deviation across bootstrap samples of
fits_bootstrap_pdf_expected_xi() with a row for each flavour and
the total expected xi.

	
validphys.closuretest.multiclosure_pdf_output.fits_bootstrap_pdf_sqrt_ratio_table(fits_bootstrap_pdf_sqrt_ratio)[source]
	Tabulate the mean and standard deviation across bootstrap samples of the
sqrt ratio of bias/variance in PDF space, with a row for each flavour and
the total. For more information on the bootstrap sampling see
fits_bootstrap_pdf_ratio().

	
validphys.closuretest.multiclosure_pdf_output.fits_bootstrap_pdf_xi_table(fits_xi_grid_values, underlying_xi_grid_values, multiclosure_underlyinglaw, multiclosure_nx=4, n_boot=100, boot_seed=9689372, use_x_basis=False)[source]
	Perform a bootstrap sampling across fits and replicas of xi, by flavour
and total and then tabulate the mean and error.

	
validphys.closuretest.multiclosure_pdf_output.fits_pdf_bias_variance_ratio(fits_pdf_flavour_ratio, fits_pdf_total_ratio)[source]
	Returns a table with the values of mean bias / mean variance with mean
referring to mean across fits, by flavour. Includes total across all
flavours allowing for correlations.

	
validphys.closuretest.multiclosure_pdf_output.fits_pdf_compare_xi_to_expected(fits_pdf_expected_xi_from_ratio, xi_flavour_table)[source]
	Two-column table comparing the measured value of xi for each flavour to the
value calculated from the bias/variance.

	
validphys.closuretest.multiclosure_pdf_output.fits_pdf_expected_xi_from_ratio(fits_pdf_sqrt_ratio)[source]
	Like
validphys.closuretest.multiclosure_output.expected_xi_from_bias_variance()
but in PDF space. An estimate is made of the integral across the central
difference distribution, with domain defined by the replica distribution.
For more details see
validphys.closuretest.multiclosure_output.expected_xi_from_bias_variance().

	
validphys.closuretest.multiclosure_pdf_output.fits_pdf_sqrt_ratio(fits_pdf_bias_variance_ratio)[source]
	Like fits_pdf_bias_variance_ratio() except taking the sqrt. This
is to see how faithful our uncertainty is in units of the standard deviation.

	
validphys.closuretest.multiclosure_pdf_output.plot_multiclosure_correlation_eigenvalues(fits_correlation_matrix_totalpdf)[source]
	Plot scatter points for each of the eigenvalues from the estimated
correlation matrix from the multiclosure PDFs in flavour and x.

In the legend add the ratio of the largest eigenvalue over the smallest
eigenvalue, aka the l2 condition number of the correlation matrix.

	
validphys.closuretest.multiclosure_pdf_output.plot_multiclosure_correlation_matrix(fits_correlation_matrix_totalpdf, multiclosure_nx=4)[source]
	Like plot_multiclosure_covariance_matrix but plots the total correlation
matrix.

	
validphys.closuretest.multiclosure_pdf_output.plot_multiclosure_covariance_matrix(fits_covariance_matrix_totalpdf, multiclosure_nx=4)[source]
	Plot the covariance matrix for all flavours. The covariance matrix has
shape n_flavours * n_x, where each block is the covariance of the replica
PDFs on the x-grid defined in xi_pdfgrids().

	
validphys.closuretest.multiclosure_pdf_output.plot_pdf_central_diff_histogram(replica_and_central_diff_totalpdf)[source]
	Histogram of the difference between central PDF
and underlying law normalised by the corresponding replica
standard deviation for all points in x and flavour alongside a scaled
Gaussian. Total xi is proportion of the histogram which falls within the
central 1-sigma confidence interval.

	
validphys.closuretest.multiclosure_pdf_output.plot_pdf_matrix(matrix, n_x, **kwargs)[source]
	Utility function which, given a covmat/corrmat for all flavours and
x, plots it with appropriate labels. Input matrix is expected to be
size (n_flavours*n_x) * (n_flavours*n_x).

	Parameters
		matrix (np.array) – square matrix which must be (n_flavours*n_x) * (n_flavours*n_x) with
elements ordered like:
(flavour0_x0, flavour0_x1, …, flavourN_x0, …, flavourN_xN)
i.e. the points along x for flavour 0, then points along x for flavour 1
etc.

	**kwargs – keyword arguments for the matplotlib.axes.Axes.imshow function

Notes

See matplotlib.axes.Axes.imshow for more details on the plotting function.

	
validphys.closuretest.multiclosure_pdf_output.plot_xi_flavour_x(xi_flavour_x, Q, internal_singlet_gluon_xgrid, internal_nonsinglet_xgrid, multiclosure_nx=4, use_x_basis=False)[source]
	For each flavour plot xi for each x-point. By default xi is calculated
and plotted in the basis which diagonalises the covmat, which is estimated
from the union of all the replicas. However, if use_x_basis is True
then xi will be calculated and plotted in the x-basis.

	
validphys.closuretest.multiclosure_pdf_output.xi_flavour_table(xi_flavour_x, xi_totalpdf)[source]
	For each flavour take the mean of xi_flavour_x across x to get a single
number, which is the proportion of points on the central PDF which are
within 1 sigma. This is calculated from the replicas of the underlying PDF.

	Returns
	xi_flavour – table of xi by flavour

	Return type
	pd.DataFrame

validphys.closuretest.multiclosure_preprocessing module

multiclosure_preprocessing.py

Module containing all of the actions related to preprocessing exponents. In
particular, comparing the next preprocessing exponents across the multiple
closure fits with the previous effective exponents, to see if there is a big
dependence on the level 1 shift.

	
validphys.closuretest.multiclosure_preprocessing.next_multiclosure_alpha_preprocessing_table(fits, fits_basis, fits_pdf, fits_fitbasis_alpha_lines)[source]
	Returns a table with the next alpha preprocessing exponent for each fit
with a multiindex column of flavour and next preprocessing range limits.

For more information see _next_multiclosure_preprocessing_table()

	
validphys.closuretest.multiclosure_preprocessing.next_multiclosure_beta_preprocessing_table(fits, fits_basis, fits_pdf, fits_fitbasis_beta_lines)[source]
	Returns a table with the next beta preprocessing exponent for each fit
with a multiindex column of flavour and next preprocessing range limits.

For more information see _next_multiclosure_preprocessing_table()

	
validphys.closuretest.multiclosure_preprocessing.plot_next_multiclosure_alpha_preprocessing(fits_fitbasis_alpha_lines, fits_pdf, next_multiclosure_alpha_preprocessing_table)[source]
	Using the table produced by
next_multiclosure_alpha_preprocessing_table(), plot the next
alpha preprocessing exponent ranges. The ranges are represented by
horizontal error bars, with vertical lines indicating the previous range
limits of the first fit.

	
validphys.closuretest.multiclosure_preprocessing.plot_next_multiclosure_alpha_preprocessing_range_width(fits_fitbasis_alpha_lines, fits_pdf, next_multiclosure_alpha_preprocessing_table)[source]
	Using the table produced by
next_multiclosure_alpha_preprocessing_table(), plot the next
alpha preprocessing exponent ranges width, aka max alpha - min alpha
as a histogram over fits for each flavour. Add a vertical line of the
previous range width of
the first fit for reference

	
validphys.closuretest.multiclosure_preprocessing.plot_next_multiclosure_beta_preprocessing(fits_fitbasis_beta_lines, fits_pdf, next_multiclosure_beta_preprocessing_table)[source]
	Using the table produced by
next_multiclosure_beta_preprocessing_table(), plot the next
beta preprocessing exponent ranges. The ranges are represented by
horizontal error bars, with vertical lines indicating the previous range
limits of the first fit.

	
validphys.closuretest.multiclosure_preprocessing.plot_next_multiclosure_beta_preprocessing_range_width(fits_fitbasis_beta_lines, fits_pdf, next_multiclosure_beta_preprocessing_table)[source]
	Using the table produced by
next_multiclosure_beta_preprocessing_table(), plot the next
beta preprocessing exponent ranges width, aka max beta - min beta
as a histogram over fits for each flavour. Add a vertical line of the
previous range width of
the first fit for reference

validphys.closuretest.multiclosure_pseudodata module

multiclosure_pseudodata

actions which load fit pseudodata and compute actions related to overfitting.
Estimators here can only be calculated on data used in the fit.

	
validphys.closuretest.multiclosure_pseudodata.expected_data_delta_chi2(data_fits_cv, internal_multiclosure_data_loader)[source]
	For data, calculate the mean of delta chi2 across all fits, returns
a tuple of number of data points and unnormalised delta chi2.

	
validphys.closuretest.multiclosure_pseudodata.expected_delta_chi2_table(groups_expected_delta_chi2, group_dataset_inputs_by_metadata, total_expected_data_delta_chi2)[source]
	Tabulate the expectation value of delta chi2 across fits for groups
with an additional row with the total across all data at the bottom.

	
validphys.closuretest.multiclosure_pseudodata.fits_dataset_cvs(fits_dataset)[source]
	Internal function for loading the level one data for all fits
for a single dataset. This function avoids the stringent metadata
checks of the newer python commondata parser.

	
validphys.closuretest.multiclosure_pseudodata.total_expected_data_delta_chi2(exps_expected_delta_chi2)[source]
	Takes expected_data_delta_chi2() evaluated for each experiment
and then sums across experiments. Returns the total number of datapoints
and unnormalised delta chi2.

Module contents

closuretest

module containing all actions specific to closure test

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

