

 	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	n3fit.layers package
	
 View page source

n3fit.layers package

Submodules

n3fit.layers.DIS module

DIS layer

This layer produces a DIS observable, which can consists of one or more fktables.
The rationale behind this layer is to keep all required operation in one single place
such that is easier to optimize or modify.

	Comment on the branching based on the number of replicas:
	This is purely for performance, masking the PDF is more efficient than padding the fk table
for one replica, and so is tensordot over einsum.

	Some timings done on snellius using tensorflow 2.15.0 and varying these 2 factors:
	
CPUGPU | einsum | tensordot |

– | – | – |

mask pdf | - | 92 65 |

|mask fk | 330 53 | 177 53 |

These timings are all for one replica.

Crucially, einsum is a requirement of the multireplica case, while tensordot gives a benefit of a factor of 2x for the single replica case.
Since this branching is required anyhow,

by masking the PDF for 1 replica instead of padding the fktable we get an extra factor of x2

	
class n3fit.layers.DIS.DIS(*args, **kwargs)[source]
	Bases: Observable

The DIS class receives a list of active flavours and a fktable
and prepares a layer that performs the convolution of said fktable with
the incoming pdf.

The fktable is expected to be rank 3 (ndata, xgrid, flavours)
while the input pdf is rank 4 of shape (batch_size, replicas, xgrid, flavours)

	
build(input_shape)[source]
	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).

	Parameters
	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).

	
gen_mask(basis)[source]
	Receives a list of active flavours and generates a boolean mask tensor

	Parameters
	basis (list(int)) – list of active flavours

	Returns
	mask – rank 1 tensor (flavours)

	Return type
	tensor

	
pad_fk(fk, mask)[source]
	Combine an fk table and a mask into an fk table padded with zeroes for the inactive
flavours, to be contracted with the full PDF.

	Parameters
		fk (tensor) – FK table of shape (ndata, active_flavours, x)

	mask (tensor) – mask of shape (flavours, active_flavours)

	Returns
	padded_fk – masked fk table of shape ndata, x, flavours)

	Return type
	tensor

	
n3fit.layers.DIS.compute_dis_observable_many_replica(pdf, padded_fk)[source]
	Contract masked fk table with PDF.

	Parameters
		pdf (tensor) – pdf of shape (batch=1, replicas, xgrid, flavours)

	padded_fk (tensor) – masked fk table of shape (ndata, xgrid, flavours)

	Returns
	observable of shape (batch=1, replicas, ndata)

	Return type
	tensor

	
n3fit.layers.DIS.compute_dis_observable_one_replica(pdf, padded_fk)[source]
	Same operations as above but a specialized implementation that is more efficient for 1 replica,
masking the PDF rather than the fk table.

n3fit.layers.DY module

	
class n3fit.layers.DY.DY(*args, **kwargs)[source]
	Bases: Observable

Computes the convolution of two PDFs (the same one twice) and one fktable

	
build(input_shape)[source]
	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).

	Parameters
	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).

	
gen_mask(basis)[source]
	Receives a list of active flavours and generates a boolean mask tensor

	Parameters
	basis (list(int)) – list of active flavours

	Returns
	mask – rank 2 tensor (flavours, flavours)

	Return type
	tensor

	
pad_fk(fk, mask)[source]
	Combine an fk table and a mask into an fk table padded with zeroes for the inactive
flavours, to be contracted with the full PDF.

In the case of 1 replica, this is less efficient than masking the PDF directly, so we
leave them separate.

	Parameters
		fk (tensor) – FK table of shape (ndata, active_flavours, x, y)

	mask (tensor) – mask of shape (flavours, flavours, active_flavours)

	Returns
	
	padded_fk (tensor of shape ndata, x, flavours, y, flavours) (>1 replicas case))

	(mask, fk) (tuple of inputs (1 replica case))

	
n3fit.layers.DY.compute_dy_observable_many_replica(pdf, padded_fk)[source]
	Contract masked fk table with two PDFs.

	Parameters
		pdf (tensor) – pdf of shape (batch=1, replicas, xgrid, flavours)

	padded_fk (tensor) – masked fk table of shape (ndata, xgrid, flavours, xgrid, flavours)

	Returns
	observable of shape (batch=1, replicas, ndata)

	Return type
	tensor

	
n3fit.layers.DY.compute_dy_observable_one_replica(pdf, mask_and_fk)[source]
	Same operations as above but a specialized implementation that is more efficient for 1 replica,
masking the PDF rather than the fk table.

n3fit.layers.losses module

Module containg the losses to be apply to the models as layers

The layer take the input from the model and acts on it producing a score function.
For instance, in the case of the chi2 (LossInvcovmat) the function takes only
the prediction of the model and, during instantiation, took the real data to compare with
and the covmat.

	
class n3fit.layers.losses.LossIntegrability(*args, **kwargs)[source]
	Bases: LossLagrange

Returns L = (y_pred)*(y_pred)

Example

>>> import numpy as np
>>> from n3fit.layers import losses
>>> pred = np.random.rand(1, 1, 5)
>>> loss_f = losses.LossIntegrability(c=1e2)
>>> loss_f(pred) > 0
True

	
apply_loss(y_pred)[source]
	

	
class n3fit.layers.losses.LossInvcovmat(*args, **kwargs)[source]
	Bases: MetaLayer

Loss function such that:
L = sum_{ij} (yt - yp)_{i} invcovmat_{ij} (yt - yp)_{j}

Takes as argument the inverse of the covmat and the target data.
It also takes an optional argument to mask part of the predictions

Both the inverse covmat and the mask (if any) are stored as layer weights
and can be updated at any points either directly or by using the
update_mask and add_covmat methods.

Example

>>> import numpy as np
>>> from n3fit.layers import losses
>>> C = np.random.rand(5,5)
>>> data = np.random.rand(1, 1, 5)
>>> pred = np.random.rand(1, 1, 5)
>>> invC = np.linalg.inv(C @ C.T)
>>> loss_f = losses.LossInvcovmat(invC, data)
>>> loss_f(pred).shape == 1
True

	
add_covmat(covmat)[source]
	Add a piece to the inverse covmat weights
Note, however, that the _covmat attribute of the layer will
still refer to the original data covmat

	
build(input_shape)[source]
	Transform the inverse covmat and the mask into
weights of the layers

	
call(y_pred, **kwargs)[source]
	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()). It is recommended to create state, including
tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

	Parameters
		inputs –
Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value
of a keyword argument.

	NumPy array or Python scalar values in inputs get cast as
tensors.

	Keras mask metadata is only collected from inputs.

	Layers are built (build(input_shape) method)
using shape info from inputs only.

	input_spec compatibility is only checked against inputs.

	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.

	The SavedModel input specification is generated using inputs
only.

	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.

	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.

	**kwargs –
Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).

	Returns
	A tensor or list/tuple of tensors.

	
update_mask(new_mask)[source]
	Update the mask

	
class n3fit.layers.losses.LossLagrange(*args, **kwargs)[source]
	Bases: MetaLayer

Abstract loss function to apply lagrange multipliers to a model.

L = lambda * f(y)

The form of f(y) is given by modifying the apply_loss method.
It is possible to modify how the multiplication of the lambda factor is implemented
by modifying the apply_multiplier method.

The (non trainable) weight containing the multiplier is named lagMult.

	
apply_loss(y)[source]
	

	
apply_multiplier(y)[source]
	

	
build(input_shape)[source]
	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).

	Parameters
	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).

	
call(y_pred, **kwargs)[source]
	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()). It is recommended to create state, including
tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

	Parameters
		inputs –
Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value
of a keyword argument.

	NumPy array or Python scalar values in inputs get cast as
tensors.

	Keras mask metadata is only collected from inputs.

	Layers are built (build(input_shape) method)
using shape info from inputs only.

	input_spec compatibility is only checked against inputs.

	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.

	The SavedModel input specification is generated using inputs
only.

	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.

	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.

	**kwargs –
Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).

	Returns
	A tensor or list/tuple of tensors.

	
class n3fit.layers.losses.LossPositivity(*args, **kwargs)[source]
	Bases: LossLagrange

Returns L = lambda*elu(y_pred)

The positivity loss is computed by inverting the sign of the
datapoints and then applying the elu function, this function is

f(x) = x if x > 0
f(x) = alpha * (e^{x} - 1) if x < 0

This is done to avoid a big discontinuity in the derivative at 0 when
the lagrange multiplier is very big.
In practice this function can produce results in the range (-alpha, inf)

Example

>>> import numpy as np
>>> from n3fit.layers import losses
>>> pred = np.random.rand(1, 1, 5)
>>> alpha = 1e-7
>>> c = 1e8
>>> loss_f = losses.LossPositivity(c=c, alpha=alpha)
>>> loss_f(pred) == -5*alpha
True
>>> loss_f(-pred) > c
True

	
apply_loss(y_pred)[source]
	

n3fit.layers.mask module

	
class n3fit.layers.mask.Mask(*args, **kwargs)[source]
	Bases: MetaLayer

This layers applies a boolean mask to an input tensor.
The mask admit a multiplier for all outputs which will be internally
saved as a weight so it can be updated during trainig.

Typical usage is to apply training/validation split masks
or applying a multiplier to a given layer

	Parameters
		bool_mask (np.array of shape (n_replicas, n_features)) – numpy array with the boolean mask to be applied

	c (float) – constant multiplier for every output

	
build(input_shape)[source]
	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).

	Parameters
	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).

	
call(ret)[source]
	Apply the mask to the input tensor, and multiply by the constant if present.

	Parameters
	ret (Tensor of shape (batch_size, n_replicas, n_features)) –

	Return type
	Tensor of shape (batch_size, n_replicas, n_features)

n3fit.layers.msr_normalization module

Definition of the imposition of the Momentum Sum Rule and Valence Sum Rules to in the PDF fit.

In the module level constants {MSR/VSR}_COMPONENTS the flavours affected by the MSR and VSR are defined.
For the Valence Sum Rule instead VSR_DENOMINATOR defines the integral of which flavour are used
to compute the normalization. Note that for a Nf=4 fit v35=v24=v.
If the number of flavours were to be changed in the future, this would need to be updated accordingly.

	
class n3fit.layers.msr_normalization.MSR_Normalization(*args, **kwargs)[source]
	Bases: MetaLayer

Computes the normalisation factors for the sum rules of the PDFs.

	
call(pdf_integrated, photon_integral)[source]
	Computes the normalization factors for the PDFs:
A_g = (1-sigma-photon)/g
A_v = A_v24 = A_v35 = 3/V
A_v3 = 1/V_3
A_v8 = 3/V_8
A_v15 = 3/V_15

Note that both the input and the output are in the 14-flavours fk-basis

	Parameters
		pdf_integrated ((Tensor(1, replicas, 14))) – the integrated PDF

	photon_integral ((Tensor(1, replicas, 1))) – the integrated photon PDF

	Returns
	normalization_factor – The normalization factors per flavour.

	Return type
	Tensor(replicas, 1, 14)

	
n3fit.layers.msr_normalization.sample_tsr(v: dict, e: dict, t: list, nr: int) → list[source]
	Sample the Triplets sum rules according to the PDG uncertainties.

	Parameters
		v (dict) – dictionary that maps the triplet component to its PDG value

	e (dict) – dictionary that maps the triplet component to its denominator

	t (list) – list of triplet component for which SR should be applied

	nr (int) – number of replicas that are fitter simultaneously

	Returns
	list of sum rule values sampled according to a normal distribution

	Return type
	list

n3fit.layers.observable module

	
class n3fit.layers.observable.Observable(*args, **kwargs)[source]
	Bases: MetaLayer, ABC

This class is the parent of the DIS and DY convolutions.
All backend-dependent code necessary for the convolutions

is (must be) concentrated here

The methods gen_mask and call must be overriden by the observables
where

		gen_mask: it is called by the initializer and generates the mask between
	fktables and pdfs

	call: this is what does the actual operation

	Parameters
		fktable_data (list[validphys.coredata.FKTableData]) – list of FK which define basis and xgrid for the fktables in the list

	fktable_arr (list) – list of fktables for this observable

	operation_name (str) – string defining the name of the operation to be applied to the fktables

	nfl (int) – number of flavours in the pdf (default:14)

	
build(input_shape)[source]
	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).

	Parameters
	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).

	
call(pdf)[source]
	This function perform the convolution with the fktable and one (DIS) or two (DY-like) pdfs.

	Parameters
	pdf (backend tensor) – rank 4 tensor (batch_size, replicas, xgrid, flavours)

	Returns
	observables – rank 3 tensor (batchsize, replicas, ndata)

	Return type
	backend tensor

	
abstract gen_mask(basis)[source]
	

	
is_polarised_pos()[source]
	

	
abstract pad_fk(fk, mask)[source]
	

	
n3fit.layers.observable.compute_float_mask(bool_mask)[source]
	Compute a float form of the given boolean mask, that can be contracted over the full flavor
axes to obtain a PDF of only the active flavors.

	Parameters
	bool_mask (boolean tensor) – mask of the active flavours

	Returns
	masked_to_full – float form of mask

	Return type
	float tensor

	
n3fit.layers.observable.compute_posbc(extern_pdf, n_replicas, idx)[source]
	Extract the relevant PDF to be used a Boundary Condition and convert
it into a Tensor that can be understood by the convolution.

	extern_lhapdf: list[np.ndarray]
	list of pre-computed PDF for a fixed Q2 with shape (n_x, n_fl),
the length of the list correspond to the number of FK tables
required for the Positivity dataset

	n_replicas: int
	number of replicas

	idx: int
	index specifying which element of extern_lhapdf should be used

	
n3fit.layers.observable.is_unique(list_of_arrays)[source]
	Check whether the list of arrays more than one different arrays

n3fit.layers.preprocessing module

	
class n3fit.layers.preprocessing.Preprocessing(*args, **kwargs)[source]
	Bases: MetaLayer

Computes preprocessing factor for the PDF.

This layer generates a factor (1-x)^beta*x^(1-alpha) where both beta and alpha
are model paramters that can be trained. If feature scaling is used, the preprocessing
factor is x^(1-alpha).

Alpha is initialized uniformly within the ranges allowed in the runcard and
then it is only allowed to move between those two values (with a hard wall in each side)

Alpha and, unless feature scaling is used, beta are initialized uniformly within
the ranges allowed in the runcard and then they are only allowed to move between those two
values (with a hard wall in each side)

	Parameters
		replica_seeds (List[int]) – list of pre replica seeds for the initializer of the random alpha and beta values

	flav_info (list) –
list of dicts containing the information about the fitting of the preprocessing factor
This corresponds to the fitting::basis parameter in the nnpdf runcard.
The dicts can contain the following fields:

smallx: range of alpha
largex: range of beta
trainable: whether these alpha-beta should be trained during the fit

(defaults to true)

	large_x (bool) – Whether large x preprocessing factor should be active

	
build(input_shape)[source]
	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).

	Parameters
	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).

	
call(x)[source]
	Compute preprocessing prefactor.

	Parameters
	x (tensor(shape=[1,N,1])) –

	Returns
	prefactor

	Return type
	tensor(shape=[1,R,N,F])

	
generate_weight(name: str, kind: str, dictionary: dict, set_to_zero: bool = False)[source]
	Generates weights according to the flavour dictionary

	Parameters
		name (str) – name to be given to the generated weight

	kind (str) – where to find the limits of the weight in the dictionary

	dictionary (dict) – dictionary defining the weight, usually one entry from flav_info

	set_to_zero (bool) – set the weight to constant 0

n3fit.layers.rotations module

This module includes rotation layers

	
class n3fit.layers.rotations.AddPhoton(*args, **kwargs)[source]
	Bases: MetaLayer

Changes the value of the photon component of the PDF to non-zero.
The photon idx in the dimension-14 PDF basis of the FKTables is always index 0.

In order to avoid bottlenecks, this layer can only compute the photon
for a given fixed shape.
In order to change the shape it is necessary to rebuild the photon.

	
call(pdfs)[source]
	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()). It is recommended to create state, including
tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

	Parameters
		inputs –
Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value
of a keyword argument.

	NumPy array or Python scalar values in inputs get cast as
tensors.

	Keras mask metadata is only collected from inputs.

	Layers are built (build(input_shape) method)
using shape info from inputs only.

	input_spec compatibility is only checked against inputs.

	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.

	The SavedModel input specification is generated using inputs
only.

	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.

	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.

	**kwargs –
Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).

	Returns
	A tensor or list/tuple of tensors.

	
register_photon(xgrid)[source]
	Compute the photon array of shape (1, replicas, xgrid, 1) and set the layer to be rebuilt

	
class n3fit.layers.rotations.FkRotation(*args, **kwargs)[source]
	Bases: Rotation

Applies a transformation from the dimension-9 evolution basis
to the dimension-14 evolution basis used by the fktables.

The input to this layer is a pdf_raw variable which is expected to have
a shape (1, None, 9), and it is then rotated to an output (1, None, 14)

	
class n3fit.layers.rotations.FlavourToEvolution(*args, **kwargs)[source]
	Bases: Rotation

Rotates from the flavour basis to
the evolution basis.

	
class n3fit.layers.rotations.ObsRotation(*args, **kwargs)[source]
	Bases: MetaLayer

Rotation is a layer used to apply a rotation transformation
input transform matrix needs to be np array of N_out*N_in so when the
matrix multiplication has taken place you get N_out, … tensor out.
If input is a true rotation then N_out=N_in

	
call(prediction_in)[source]
	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()). It is recommended to create state, including
tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

	Parameters
		inputs –
Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value
of a keyword argument.

	NumPy array or Python scalar values in inputs get cast as
tensors.

	Keras mask metadata is only collected from inputs.

	Layers are built (build(input_shape) method)
using shape info from inputs only.

	input_spec compatibility is only checked against inputs.

	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.

	The SavedModel input specification is generated using inputs
only.

	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.

	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.

	**kwargs –
Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).

	Returns
	A tensor or list/tuple of tensors.

	
class n3fit.layers.rotations.Rotation(*args, **kwargs)[source]
	Bases: MetaLayer

Rotates the input through some user defined rotation matrix.
Given an input matrix M_{m,n} with an input x_{m}, returns
y_{n} = x_{m}M_{m,n}

	Parameters
		rotation_matrix (np.array) – rotation matrix

	rotation_axis (int) – rotation_axis of input to be rotated

	
call(x_raw)[source]
	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()). It is recommended to create state, including
tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

	Parameters
		inputs –
Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value
of a keyword argument.

	NumPy array or Python scalar values in inputs get cast as
tensors.

	Keras mask metadata is only collected from inputs.

	Layers are built (build(input_shape) method)
using shape info from inputs only.

	input_spec compatibility is only checked against inputs.

	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.

	The SavedModel input specification is generated using inputs
only.

	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.

	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.

	**kwargs –
Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).

	Returns
	A tensor or list/tuple of tensors.

	
is_identity()[source]
	Returns true if the rotation is an identity

n3fit.layers.x_operations module

This module contains layers acting on the x-grid input of the NN

	The two operations included are:
		xDivide

	xIntegrator

The names are self-describing. The only subtlety is that they do not act equally
for all flavours. The choice of flavours on which to act in a different way is given
as an input argument.

	
class n3fit.layers.x_operations.xDivide(*args, **kwargs)[source]
	Bases: MetaLayer

Create tensor of either 1/x or ones depending on the flavour,
to be used to divide some PDFs by x by multiplying with the result.

By default it utilizes the 14-flavour FK basis. In the unpolarized
case, one divides [v, v3, v8, v15] which corresponds to indices
(3, 4, 5, 6) from the FK basis:

(photon, sigma, g, v, v3, v8, v15, v24, v35, t3, t8, t15, t24, t35)

In the polarized case, only [T3, T8] are divided by x which
corresponds to the indices (9, 10).

Parameters:

	output_dim: int
	dimension of the pdf

	div_list: list
	list of indices to be divided by x

	
call(x)[source]
	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()). It is recommended to create state, including
tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

	Parameters
		inputs –
Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value
of a keyword argument.

	NumPy array or Python scalar values in inputs get cast as
tensors.

	Keras mask metadata is only collected from inputs.

	Layers are built (build(input_shape) method)
using shape info from inputs only.

	input_spec compatibility is only checked against inputs.

	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.

	The SavedModel input specification is generated using inputs
only.

	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.

	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.

	**kwargs –
Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).

	Returns
	A tensor or list/tuple of tensors.

	
get_config()[source]
	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.

	Returns
	Python dictionary.

	
class n3fit.layers.x_operations.xIntegrator(*args, **kwargs)[source]
	Bases: MetaLayer

This layer performs a sum of the input layer/tensor on the axis corresponding to the x-grid
weighted by the weights of the grid.

The output shape is the input shape with the x-axis removed.

	Parameters
		grid_weights (np.array) – weights of the grid

	x_axis (int (default=2)) – axis of the input tensor that corresponds to the x-grid

	
call(pdf)[source]
	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()). It is recommended to create state, including
tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

	Parameters
		inputs –
Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value
of a keyword argument.

	NumPy array or Python scalar values in inputs get cast as
tensors.

	Keras mask metadata is only collected from inputs.

	Layers are built (build(input_shape) method)
using shape info from inputs only.

	input_spec compatibility is only checked against inputs.

	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.

	The SavedModel input specification is generated using inputs
only.

	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.

	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.

	**kwargs –
Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).

	Returns
	A tensor or list/tuple of tensors.

Module contents

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

