

 	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	n3fit.io package
	
 View page source

n3fit.io package

Submodules

n3fit.io.writer module

Module containing functions dedicated to the write down of the output of n3fit

The goal is to generate the same folder/file structure as the old nnfit code
so previously active scripts can still work.

	
class n3fit.io.writer.SuperEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)[source]
	Bases: JSONEncoder

Custom json encoder to get around the fact that np.float32 =/= float

	
default(o)[source]
	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
class n3fit.io.writer.WriterWrapper(replica_numbers, pdf_objects, stopping_object, all_chi2s, theory, timings)[source]
	Bases: object

	
write_data(save_path, fitname, weights_name)[source]
	Save all the data of a fit, for all replicas.

	Parameters
		save_path – path for the fit results, ex: ${PWD}/runcard_name/nnfit

	fitname – name of the fit, ex: Basic_runcard

	weights_name – name of the file to save weights to, if not empty

	
n3fit.io.writer.evln2lha(evln, nf=6)[source]
	

	
n3fit.io.writer.jsonfit(best_epoch, positivity_status, preprocessing, arc_lengths, integrability_numbers, tr_chi2, vl_chi2, true_chi2, stop_epoch, timing)[source]
	Generates a dictionary containing all relevant metadata for the fit

	Parameters
		best_epoch (int) – epoch at which the best fit was found

	positivity_status (str) – string describing the positivity status of the fit

	preprocessing (dict) – dictionary of the preprocessing factors

	arc_lengths (list) – list of the arc lengths of the different PDFs

	integrability_numbers (list) – list of the integrability numbers of the different PDFs

	tr_chi2 (float) – chi2 for the training

	vl_chi2 (float) – chi2 for the validation

	true_chi2 (float) – chi2 for the exp (unreplica’d data)

	epoch_stop (int) – epoch at which the stopping stopped (not the one for the best fit!)

	timing (dict) – dictionary of the timing of the different events that happened

	
n3fit.io.writer.storefit(pdf_object, replica, out_path, theory)[source]
	One-trick function which generates all output in the NNPDF format
so that all other scripts can still be used.

	Parameters
		pdf_object – N3PDF object constructed from the pdf_model
that receives as input a point in x and returns an array of 14 flavours

	replica – the replica index

	out_path – the path where to store the output

	theory – theory information of the fit

	
n3fit.io.writer.version()[source]
	Generates a dictionary with misc version info for this run

Module contents

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

