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n3fit.io package


Submodules



n3fit.io.writer module

Module containing functions dedicated to the write down of the output of n3fit

The goal is to generate the same folder/file structure as the old nnfit code
so previously active scripts can still work.

	
class n3fit.io.writer.SuperEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)[source]
	Bases: JSONEncoder

Custom json encoder to get around the fact that np.float32 =/= float

	
default(o)[source]
	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
    try:
        iterable = iter(o)
    except TypeError:
        pass
    else:
        return list(iterable)
    # Let the base class default method raise the TypeError
    return JSONEncoder.default(self, o)













	
class n3fit.io.writer.WriterWrapper(replica_numbers, pdf_objects, stopping_object, all_chi2s, theory, timings)[source]
	Bases: object

	
write_data(save_path, fitname, weights_name)[source]
	Save all the data of a fit, for all replicas.

	Parameters
		save_path – path for the fit results, ex: ${PWD}/runcard_name/nnfit

	fitname – name of the fit, ex: Basic_runcard

	weights_name – name of the file to save weights to, if not empty














	
n3fit.io.writer.evln2lha(evln, nf=6)[source]
	



	
n3fit.io.writer.jsonfit(best_epoch, positivity_status, preprocessing, arc_lengths, integrability_numbers, tr_chi2, vl_chi2, true_chi2, stop_epoch, timing)[source]
	Generates a dictionary containing all relevant metadata for the fit

	Parameters
		best_epoch (int) – epoch at which the best fit was found

	positivity_status (str) – string describing the positivity status of the fit

	preprocessing (dict) – dictionary of the preprocessing factors

	arc_lengths (list) – list of the arc lengths of the different PDFs

	integrability_numbers (list) – list of the integrability numbers of the different PDFs

	tr_chi2 (float) – chi2 for the training

	vl_chi2 (float) – chi2 for the validation

	true_chi2 (float) – chi2 for the exp (unreplica’d data)

	epoch_stop (int) – epoch at which the stopping stopped (not the one for the best fit!)

	timing (dict) – dictionary of the timing of the different events that happened










	
n3fit.io.writer.storefit(pdf_object, replica, out_path, theory)[source]
	One-trick function which generates all output in the NNPDF format
so that all other scripts can still be used.

	Parameters
		pdf_object – N3PDF object constructed from the pdf_model
that receives as input a point in x and returns an array of 14 flavours

	replica – the replica index

	out_path – the path where to store the output

	theory – theory information of the fit










	
n3fit.io.writer.version()[source]
	Generates a dictionary with misc version info for this run







Module contents
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