

 	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	n3fit.backends.keras_backend package
	
 View page source

n3fit.backends.keras_backend package

Submodules

n3fit.backends.keras_backend.MetaLayer module

The class MetaLayer is an extension of the backend Layer class
with a number of methods and helpers to facilitate writing new custom layers
in such a way that the new custom layer don’t need to rely in anything backend-dependent

In other words, if you want to implement a new layer and need functions not included here
it is better to add a new method which is just a call to the relevant backend-dependent function
For instance: np_to_tensor is just a call to K.constant

	
class n3fit.backends.keras_backend.MetaLayer.MetaLayer(*args, **kwargs)[source]
	Bases: Layer

This metalayer function must contain all backend-dependent functions

	In order to write a custom Keras layer you usually need to override:
		__init__

	meta_call

	
builder_helper(name, kernel_shape, initializer, trainable=True, constraint=None)[source]
	Creates a kernel that should be saved as an attribute of the caller class
name: name of the kernel
shape: tuple with its shape
initializer: one of the initializers from this class (actually, any keras initializer)
trainable: if it is
constraint: one of the constraints from this class (actually, any keras constraints)

	
get_weight_by_name(weight_name, internal_count=0)[source]
	Returns a weight of the layer by name, returns None if the layer does not include
the named weight.

Note that internally weights of a layer are prefaced by the name of the layer, this
should not be added to the input of this function. i.e., if the internal name is
“layer/weight:0”, the argument to this method should be just “weight”.

	Parameters
	weight_name (str) – Name of the weight

	
static init_constant(value)[source]
	

	
initializers = {'glorot_normal': (<class 'keras.src.initializers.initializers.GlorotNormal'>, {}), 'glorot_uniform': (<class 'keras.src.initializers.initializers.GlorotUniform'>, {}), 'random_uniform': (<class 'keras.src.initializers.initializers.RandomUniform'>, {'minval': -0.5, 'maxval': 0.5})}
	

	
static select_initializer(ini_name, seed=None, **kwargs)[source]
	Selects one of the initializers (which does initialize, i.e., not constant)
All of them should accept seed

	
weight_inits = []
	

n3fit.backends.keras_backend.MetaModel module

MetaModel class

Extension of the backend Model class containing some wrappers in order to absorb other
backend-dependent calls.

	
class n3fit.backends.keras_backend.MetaModel.MetaModel(*args, **kwargs)[source]
	Bases: Model

The model wraps keras.Model and adds some custom behaviour. Most notably it
allows supplying constant values for input arguments, which are used when
training and making predictions with the model (note that constants need to
be explicitly registered as inputs, see
https://github.com/keras-team/keras/issues/11912). These inputs can be
passed in the input_values parameter, or gathered from the
tensor_content attribute of the input_tensors, which is set
automatically when using the numpy_to_input function from
n3fit.backends.keras_backend.operations.

	Parameters
		input_tensors (dict[Any, tensorflow.keras.layers.Input]) – Input layer

	output_tensors (tensorflow.keras.layers.Layer) – Output layer

	input_values (dict[Any, array_like]) – Constant values for the input layer, to be supplied when making
predictions with the model.

	**kwargs – keyword arguments to pass directly to Model

	
accepted_optimizers = {'Adadelta': (<class 'keras.src.optimizers.adadelta.Adadelta'>, {'learning_rate': 1.0, 'clipnorm': 1.0}), 'Adagrad': (<class 'keras.src.optimizers.adagrad.Adagrad'>, {'clipnorm': 1.0}), 'Adam': (<class 'keras.src.optimizers.adam.Adam'>, {'learning_rate': 0.01, 'clipnorm': 1.0}), 'Adamax': (<class 'keras.src.optimizers.adamax.Adamax'>, {'clipnorm': 1.0}), 'Amsgrad': (<class 'keras.src.optimizers.adam.Adam'>, {'learning_rate': 0.01, 'amsgrad': True, 'clipnorm': 1.0}), 'Nadam': (<class 'keras.src.optimizers.nadam.Nadam'>, {'learning_rate': 0.001, 'clipnorm': 1.0}), 'RMSprop': (<class 'keras.src.optimizers.rmsprop.RMSprop'>, {'learning_rate': 0.01, 'clipnorm': 1.0}), 'SGD': (<class 'keras.src.optimizers.sgd.SGD'>, {'learning_rate': 0.01, 'momentum': 0.0, 'nesterov': False, 'clipnorm': 1.0})}
	

	
apply_as_layer(x)[source]
	Apply the model as a layer

	
compile(optimizer_name='RMSprop', learning_rate=None, loss=None, target_output=None, clipnorm=None, **kwargs)[source]
	Compile the model given an optimizer and a list of loss functions.
The optimizer must be one of those implemented in the optimizer attribute of this class.

	Options:
			A learning rate and a list of target outpout can be defined.
	These will be passed down to the optimizer.

		A target_output can be defined. If done in this way
	(for instance because we know the target data will be the same for the whole fit)
the data will be compiled together with the model and won’t be necessary to
input it again when calling the perform_fit or compute_losses methods.

	Parameters
		optimizer_name (str) – string defining the optimizer to be used

	learning_rate (float) – learning rate of of the optimizer
(if accepted as an argument, if not it will be ignored)

	loss (list) – list of loss functions to be pass to the model

	target_output (list) – list of outputs to compare the results to during fitting/evaluation
if given further calls to fit/evaluate must be done with y = None.

	
compute_losses()[source]
	This function is equivalent to the model evaluate(x,y) method of most TensorFlow models
which return a dictionary of losses per output layer.
The losses reported in the evaluate method for n3fit are, however, summed over replicas.
Instead the loss we are interested in is usually the output of the model (i.e., predict)
This function then generates a dict of partial losses of the model separated per replica.
i.e., the output for experiment {‘LHC_exp’} will be an array of Nrep elements.

	Returns
	a dictionary with all partial losses of the model

	Return type
	dict

	
get_layer_re(regex)[source]
	Get all layers matching the given regular expression

	
get_replica_weights(i_replica)[source]
	Get the weights of replica i_replica.

This assumes that the only weights are in the
layer types defined as the constants

NN_LAYER_ALL_REPLICAS & PREPROCESSING_LAYER_ALL_REPLICAS

	Parameters
	i_replica (int) –

	Returns
	dictionary with the weights of the replica

	Return type
	dict

	
load_identical_replicas(model_file)[source]
	From a single replica model, load the same weights into all replicas.

	
property num_replicas
	

	
perform_fit(x=None, y=None, epochs=1, **kwargs)[source]
	Performs forward (and backwards) propagation for the model for a given number of epochs.

The output of this function consists on a dictionary that maps the names of the metrics
of the model (the loss functions) to the partial losses.

If the model was compiled with input and output data, they will not be passed through.
In this case by default the number of epochs will be set to 1

	ex:
	{‘loss’: [100], ‘dataset_a_loss1’ : [67], ‘dataset_2_loss’: [33]}

	Returns
	loss_dict – a dictionary with all partial losses of the model

	Return type
	dict

	
predict(x=None, **kwargs)[source]
	Call super().predict with the right input arguments

	
reset_layer_weights_to(layer_names, reference_vals)[source]
	Set weights for the given layer to the given reference values

The reference_vals values list must be a list of the same size
of layer_names and it must consist of numpy arrays that perfectly
align to the reference layer weights.
In the special case of 1-weight layers it admits a scalar as input.

	Parameters
		layer_names (list) – list of names of the layers to update weights

	reference_vals (list(float) or list(arrays)) – list of scalar or arrays to assign to each layer

	
save_weights(file, save_format='h5')[source]
		Compatibility function for:
		tf < 2.16, keras < 3: argument save format needed for h5

	tf >= 2.16, keras >= 3: save format is deduced from the file extension

In both cases, the final weights are finally copied to the file path.

	
set_masks_to(names, val=0.0)[source]
	Set all mask value to the selected value
Masks in MetaModel should be named {name}_mask

Mask are layers with one single weight (shape=(1,)) that multiplies the input

	Parameters
		names (list) – list of masks to look for

	val (float) – selected value of the mask

	
set_replica_weights(weights, i_replica=0)[source]
	Set the weights of replica i_replica.

This assumes that the only weights are in layers called
NN_{i_replica} and preprocessing_factor_{i_replica}

	Parameters
		weights (dict) – dictionary with the weights of the replica

	i_replica (int) – the replica number to set, defaulting to 0

	
split_replicas()[source]
	Split the single multi-replica model into a list of separate single replica models,
maintaining the current state of the weights.

	Returns
	list of single replica models

	Return type
	list

	
n3fit.backends.keras_backend.MetaModel.get_layer_replica_weights(layer, i_replica: int)[source]
	Get the weights for the given single replica i_replica,
from a layer that contains the weights of all the replicas.

Note that the layer could be a complete NN with many separated sub_layers
each of which containing weights for all replicas together.
This functions separates the per-replica weights and returns the list of weight as if the
input layer were made of _only_ replica i_replica.

	Parameters
		layer (MetaLayer) – the layer to get the weights from

	i_replica (int) – the replica number

	Returns
	weights – list of weights for the replica

	Return type
	list

	
n3fit.backends.keras_backend.MetaModel.is_stacked_single_replicas(layer)[source]
	Check if the layer consists of stacked single replicas (Only happens for NN layers),
to determine how to extract single replica weights.

	Parameters
	layer (MetaLayer) – the layer to check

	Returns
	True if the layer consists of stacked single replicas

	Return type
	bool

	
n3fit.backends.keras_backend.MetaModel.set_layer_replica_weights(layer, weights, i_replica: int)[source]
	Set the weights for the given single replica i_replica.
When the input layer contains weights for many replicas, ensures that
only those corresponding to replica i_replica are updated.

	Parameters
		layer (MetaLayer) – the layer to set the weights for

	weights (list) – list of weights for the replica

	i_replica (int) – the replica number

n3fit.backends.keras_backend.base_layers module

This module defines custom base layers to be used by the n3fit
Neural Network.
These layers can use the keras standard set of activation function
or implement their own.

For a layer to be used by n3fit it should be contained in the layers dictionary defined below.
This dictionary has the following structure:

‘name of the layer’ : (Layer_class, {dictionary of arguments: defaults})

In order to add custom activation functions, they must be added to
the custom_activations dictionary with the following structure:

‘name of the activation’ : function

The names of the layer and the activation function are the ones to be used in the n3fit runcard.

	
class n3fit.backends.keras_backend.base_layers.Dense(*args, **kwargs)[source]
	Bases: Dense, MetaLayer

	
n3fit.backends.keras_backend.base_layers.LSTM_modified(**kwargs)[source]
	LSTM asks for a sample X timestep X features kind of thing so we need to reshape the input

	
n3fit.backends.keras_backend.base_layers.base_layer_selector(layer_name, **kwargs)[source]
	Given a layer name, looks for it in the layers dictionary and returns an instance.

The layer dictionary defines a number of defaults
but they can be overwritten/enhanced through kwargs

	Parameters
		`layer_name –
str with the name of the layer

	**kwargs – extra optional arguments to pass to the layer (beyond their defaults)

	
n3fit.backends.keras_backend.base_layers.dense_per_flavour(basis_size=8, kernel_initializer='glorot_normal', **dense_kwargs)[source]
	Generates a list of layers which can take as an input either one single layer
or a list of the same size
If taking one single layer, this one single layer will be the input of every layer in the list.
If taking a list of layer of the same size, each layer on the list will take
as input the layer on the input list in the same position.

Note that, if the initializer is seeded, it should be a list where the seed is different
for each element.

	i.e., if basis_size is 3 and is taking as input one layer A the output will be:
	[B1(A), B2(A), B3(A)]

	if taking, instead, a list [A1, A2, A3] the output will be:
	[B1(A1), B2(A2), B3(A3)]

	
n3fit.backends.keras_backend.base_layers.leaky_relu(x)[source]
	Computes the Leaky ReLU activation function

	
n3fit.backends.keras_backend.base_layers.modified_tanh(x)[source]
	A non-saturating version of the tanh function

	
n3fit.backends.keras_backend.base_layers.regularizer_selector(reg_name, **kwargs)[source]
	Given a regularizer name looks in the regularizer dictionary and
return an instance.

The regularizer dictionary defines defaults for regularizers but these can
be overwritten by supplying kwargs

	Parameters
		layer_name – str with the name of the regularizer

	**kwargs – extra optional arguments to pass to the regularizer

	
n3fit.backends.keras_backend.base_layers.square_activation(x)[source]
	Squares the input

n3fit.backends.keras_backend.callbacks module

Callbacks to be used during training

The callbacks defined in this module can be passed to the callbacks argument
of the perform_fit method as a list.

For the most typical usage: on_epoch_end,
they must take as input an epoch number and a log of the partial losses.

	
class n3fit.backends.keras_backend.callbacks.LagrangeCallback(datasets, multipliers, update_freq=100)[source]
	Bases: Callback

Updates the given datasets
with its respective multipliers each update_freq epochs

	Parameters
		datasets (list(str)) – List of the names of the datasets to be trained

	multipliers (list(float)) – List of multipliers to be applied

	update_freq (int) – each how many epochs the positivity lambda is updated

	
on_epoch_end(epoch, logs=None)[source]
	Function to be called at the end of every epoch

	
on_train_begin(logs=None)[source]
	Save an instance of all relevant layers

	
class n3fit.backends.keras_backend.callbacks.StoppingCallback(stopping_object, log_freq=100)[source]
	Bases: Callback

Given a stopping_object, the callback will monitor the validation chi2
and will stop the training model when the conditions given by stopping_object
are met.

	Parameters
		stopping_object (Stopping) – instance of Stopping which controls when the fit should stop

	log_freq (int) – each how many epochs the print_stats argument of stopping_object
will be set to true

	
on_epoch_end(epoch, logs=None)[source]
	Function to be called at the end of every epoch
Every log_freq number of epochs, the monitor_chi2 method of the stopping_object
will be called and the validation loss (broken down by experiment) will be logged.
For the training model only the total loss is logged during the training.

	
on_train_end(logs=None)[source]
	The training can be finished by the stopping or by
Tensorflow when the number of epochs reaches the maximum.
In this second case the stopping has to be manually set

	
class n3fit.backends.keras_backend.callbacks.TimerCallback(count_range=100)[source]
	Bases: Callback

Callback to be used during debugging to time the fit

	
on_epoch_end(epoch, logs=None)[source]
	At the end of every epoch it checks the time

	
on_train_end(logs=None)[source]
	Print the results

	
n3fit.backends.keras_backend.callbacks.gen_tensorboard_callback(log_dir, profiling=False, histogram_freq=0)[source]
	Generate tensorboard logging details at log_dir.
Metrics of the system are saved each epoch.
If the profiling flag is set to True, it will also attempt
to save profiling data.

Note the usage of this callback can hurt performance.

	Parameters
		log_dir (str) – Directory in which to save tensorboard details

	profiling (bool) – Whether or not to save profiling information (default False)

n3fit.backends.keras_backend.constraints module

Implementations of weight constraints for initializers

	
class n3fit.backends.keras_backend.constraints.MinMaxWeight(min_value, max_value, **kwargs)[source]
	Bases: MinMaxNorm

Small override to the MinMaxNorm Keras class to not look at the absolute value
This version looks at the sum instead of at the norm

n3fit.backends.keras_backend.internal_state module

Library of functions that modify the internal state of Keras/Tensorflow

	
n3fit.backends.keras_backend.internal_state.clear_backend_state()[source]
	Clears the state of the backend.
Internally it cleans the Keras/TF internal state, liberating the layer names
and unused memory.

	
n3fit.backends.keras_backend.internal_state.get_physical_gpus()[source]
	Retrieve a list of all physical GPU devices available in the system.

	Returns
	list

	Return type
	A list of TensorFlow physical devices of type ‘GPU’.

	
n3fit.backends.keras_backend.internal_state.set_eager(flag=True)[source]
	Set eager mode on or off
for a very slow but fine grained debugging call this function as early as possible
ideally after the first tf import

	
n3fit.backends.keras_backend.internal_state.set_initial_state(debug=False, external_seed=None, max_cores=None, double_precision=False)[source]
	This function sets the initial internal state for the different components of n3fit.

	In debug mode it seeds all seedable libraries, which include:
		numpy

	hyperopt

	python random

	tensorflow

The tensorflow/keras part is based on Keras’ own
[guide](https://keras.io/getting_started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development)
Note that you might also need PYTHONHASHSEED=0 (outside the program) for full reproducibility.

To ensure reproducibility in debug mode, if the number of cores is not given,
it will be set to 1 (with 1 thread per core)

	Parameters
		debug (bool) – If this is a debug run, the initial seeds are fixed

	external_seed (int) – Force a seed into numpy, random and tf

	max_cores (int) – Maximum number of cores (as many as physical cores by default)

	double_precision (bool) – If set, use float64 as the default float type

	
n3fit.backends.keras_backend.internal_state.set_number_of_cores(max_cores=None, max_threads=None)[source]
	Set the maximum number of cores and threads per core to be used by TF.
It defaults to the number of physical cores
(and will never surpass it even if max_cores is above)

	Parameters
	max_cores (int) – Maximum number of cores to be used

n3fit.backends.keras_backend.multi_dense module

	
class n3fit.backends.keras_backend.multi_dense.MultiDense(*args, **kwargs)[source]
	Bases: Dense

Dense layer for multiple replicas at the same time.

For the first layer in the network, (for which is_first_layer should be set to True),
the input shape is (batch_size, gridsize, features), still without a replica axis.
In this case this layer acts as a stack of single dense layers,
with their own kernel and bias, acting on the same input.

For subsequent layers, the input already contains multiple replicas, and the shape is
(batch_size, replicas, gridsize, features).
In this case, the input for each replica is multiplied by its own slice of the kernel.

Weights are initialized using a replica_seeds list of seeds, and are identical to the
weights of a list of single dense layers with the same replica_seeds.

	Parameters
		replica_seeds (List[int]) – List of seeds per replica for the kernel initializer.

	kernel_initializer (Initializer) – Initializer class for the kernel.

	is_first_layer (bool (default: False)) – Whether this is the first MultiDense layer in the network, and so the input shape
does not contain a replica axis.

	base_seed (int (default: 0)) – Base seed for the single replica initializer to which the replica seeds are added.

	
build(input_shape)[source]
	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).

	Parameters
	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).

	
call(inputs)[source]
	Compute output of shape (batch_size, replicas, gridsize, units).

For the first layer, this is equivalent to
applying each replica separately and concatenating along the last axis.
If the input already contains multiple replica outputs, it is equivalent
to applying each replica to its corresponding input.

	
compute_output_shape(input_shape)[source]
	Computes the output shape of the layer.

This method will cause the layer’s state to be built, if that has not
happened before. This requires that the layer will later be used with
inputs that match the input shape provided here.

	Parameters
	input_shape – Shape tuple (tuple of integers) or tf.TensorShape,
or structure of shape tuples / tf.TensorShape instances
(one per output tensor of the layer).
Shape tuples can include None for free dimensions,
instead of an integer.

	Returns
	A tf.TensorShape instance
or structure of tf.TensorShape instances.

	
get_config()[source]
	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.

	Returns
	Python dictionary.

	
class n3fit.backends.keras_backend.multi_dense.MultiInitializer(single_initializer: Initializer, replica_seeds: List[int], base_seed: int)[source]
	Bases: Initializer

Multi replica initializer that exactly replicates a stack of single replica initializers.

Weights are stacked on the first axis, and per replica seeds are added to a base seed of the
given single replica initializer.

	Parameters
		single_initializer (Initializer) – Initializer class for the kernel.

	replica_seeds (List[int]) – List of seeds per replica for the kernel initializer.

	base_seed (int) – Base seed for the single replica initializer to which the replica seeds are added.

n3fit.backends.keras_backend.operations module

This module contains the list of operations that can be used within the
call method of the n3fit layers as well as operations that can
act on layers.

This includes an implementation of the NNPDF operations on fktable in the keras
language (with the mapping c_to_py_fun) into Keras Lambda layers.

Tensor operations are compiled through the @tf.function decorator for optimization

The rest of the operations in this module are divided into four categories:
numpy to tensor:

Operations that take a numpy array and return a tensorflow tensor

	layer to layer:
	Operations that take a layer and return another layer

	tensor to tensor:
	Operations that take a tensor and return a tensor

	layer generation:
	Instanciate a layer to be applied by the calling function

Some of these are just aliases to the backend (tensorflow or Keras) operations
Note that tensor operations can also be applied to layers as the output of a layer is a tensor
equally operations are automatically converted to layers when used as such.

	
n3fit.backends.keras_backend.operations.as_layer(operation, op_args=None, op_kwargs=None, **kwargs)[source]
	Wrap any operation as a keras layer

Note that a layer call argument takes only one argument, therefore
all extra arguments defining the operation must be given as part
of op_args (a list) and op_kwargs (a dict) and will be compiled
together with the operation

	Parameters
		operation (function) – opertion to compute (its first argument must be for a tensor)

	op_args (list) – list of positional arguments for the operation

	op_kwargs (dict) – dict of optional arguments for the operation

	Returns
	op_layer – a keras layer that applies the operation upon call

	Return type
	layer

	
n3fit.backends.keras_backend.operations.backend_function(fun_name, *args, **kwargs)[source]
	Wrapper to call non-explicitly implemented backend functions by name: (fun_name)
see full docs for some possibilities

	
n3fit.backends.keras_backend.operations.batchit(x, batch_dimension=0, **kwarg)[source]
	Add a batch dimension to tensor x

	
n3fit.backends.keras_backend.operations.boolean_mask(*args, **kwargs)[source]
	Applies a boolean mask to a tensor

Relevant parameters: (tensor, mask, axis=None)
see full docs.

	
n3fit.backends.keras_backend.operations.c_to_py_fun(op_name, name='dataset')[source]
	Map the NNPDF operations to Keras layers
NNPDF operations are defined in validphys.convolution.OP()

	Parameters
	op_name (str) – A string defining the operation name

	
n3fit.backends.keras_backend.operations.concatenate(tensor_list, axis=-1, target_shape=None, name=None)[source]
	Concatenates a list of numbers or tensor into a bigger tensor
If the target shape is given, the output is reshaped to said shape

	
n3fit.backends.keras_backend.operations.einsum(equation, *args, **kwargs)[source]
	Computes the tensor product using einsum
See full docs

	
n3fit.backends.keras_backend.operations.evaluate(tensor)[source]
	Evaluate input tensor using the backend

	
n3fit.backends.keras_backend.operations.flatten(x)[source]
	Flatten tensor x

	
n3fit.backends.keras_backend.operations.gather(*args, **kwargs)[source]
	Gather elements from a tensor along an axis

	
n3fit.backends.keras_backend.operations.numpy_to_input(numpy_array: ndarray[Any, dtype[_ScalarType_co]], name: Optional[str] = None)[source]
	Takes a numpy array and generates an Input layer with the same shape,
but with a batch dimension (of size 1) added.

	Parameters
		numpy_array (np.ndarray) –

	name (str) – name to give to the layer

	
n3fit.backends.keras_backend.operations.numpy_to_tensor(ival, **kwargs)[source]
	Make the input into a tensor

	
n3fit.backends.keras_backend.operations.op_gather_keep_dims(tensor, indices, axis=0, **kwargs)[source]
	A convoluted way of providing x[:, indices, :]

From TF 2.4 onwards tensorflow is able to understand the syntax above for
both eager and non-eager tensors

	
n3fit.backends.keras_backend.operations.op_log(o_tensor, **kwargs)[source]
	Computes the logarithm of the input

	
n3fit.backends.keras_backend.operations.op_multiply(o_list, **kwargs)[source]
	Receives a list of layers of the same output size and multiply them element-wise

	
n3fit.backends.keras_backend.operations.op_multiply_dim(o_list, **kwargs)[source]
	Bypass in order to multiply two layers with different output dimension
for instance: (10000 x 14) * (14)
as the normal keras multiply don’t accept it (but somewhow it does accept it doing it like this)

	
n3fit.backends.keras_backend.operations.op_subtract(inputs, **kwargs)[source]
	Computes the difference between two tensors.
see full docs

	
n3fit.backends.keras_backend.operations.pow(tensor, power)[source]
	Computes the power of the tensor

	
n3fit.backends.keras_backend.operations.reshape(x, shape)[source]
	reshape tensor x

	
n3fit.backends.keras_backend.operations.scatter_to_one(values, indices, output_shape)[source]
	Like scatter_nd initialized to one instead of zero
see full docs

	
n3fit.backends.keras_backend.operations.split(*args, **kwargs)[source]
	Splits the tensor on the selected axis
see full docs

	
n3fit.backends.keras_backend.operations.stack(tensor_list, axis=0, **kwargs)[source]
	Stack a list of tensors
see full docs

	
n3fit.backends.keras_backend.operations.sum(*args, **kwargs)[source]
	Computes the sum of the elements of the tensor
see full docs

	
n3fit.backends.keras_backend.operations.swapaxes(tensor, source, destination)[source]
	Moves the axis of the tensor from source to destination, as in numpy.swapaxes.
see full docs

	
n3fit.backends.keras_backend.operations.tensor_ones_like(*args, **kwargs)[source]
	Generates a tensor of ones of the same shape as the input tensor
See full docs

	
n3fit.backends.keras_backend.operations.tensor_product(*args, **kwargs)[source]
	Computes the tensordot product between tensor_x and tensor_y
See full docs

	
n3fit.backends.keras_backend.operations.transpose(tensor, **kwargs)[source]
	Transpose a layer,
see full docs

Module contents

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

