

 	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions	Introduction
	Experimental data files
	Theory data files
	Organisation of data files
	FK configuration variables
	Example: CFACTOR file format
	Example: FK preamble
	Plotting format	Naming convention
	Format	Data label
	Kinematic labels
	Plotting and grouping
	Transforming the result
	Plotting options
	Overriding configuration for normalized plots
	Metadata keys

	Example

	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Storage of data and theory predictions
	Plotting format
	
 View page source

Plotting format

A plotting file defines a set of options that are used for analysis
and representation purposes, particularly to determine how datasets
should be represented in plots and how they should be grouped
together according to various criteria. The plotting files should be
considered part of the implementation of the dataset, and should be
read by various tools that want to sensibly represent the data.

Naming convention

Plotting files are located in the commondata
folder (nnpdfcpp/data/commondata).
For a dataset labeled <DATASET>, the corresponding file name is
PLOTTING_<DATASET>.yaml or PLOTTING_<DATASET>.yml

For example, given the dataset “HERA1CCEP”, the corresponding
plotting file name is:

PLOTTING_HERA1CCEP.yaml

Additionally, the configuration is loaded from a per-process-type file
called:

PLOTTINGTYPE_<type>.yaml

See kinematic labels below for a list of defined types. When a key
is present both in the dataset-specific and the per-process-type file, the
dataset-specific one always takes precedence.

Format

The plotting file specifies the variable in which the data
is to be plotted (in the x axis) as well as the variables
in which the data will be split in different lines in the
same figure or in different figures. The possible variables
(’kinematic labels’) are described below.

The format also allows the control of several plotting properties, such
as whether to use log scale, or the axes labels.

Data label

A key called dataset_label can be used to specify a nice plotting
and display label for each dataset. LaTeX math is allowed between
dollar signs. See the example plotting file for usage.

Kinematic labels

The default kinematic variables are inferred from the process type
declared in the commondata files (more specifically from
a substring). Currently they are:

'DIS': ('x', '$Q^2 (GeV^2)$', 'y'),
'DYP': ('y', '$M^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'EWJ_JPT': ('$p_T (GeV)$', '$M^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'EWJ_JRAP': ('$\\eta/y$', '$M^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'EWJ_MLL': ('$M_{ll} (GeV)$', '$M_{ll}^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'EWJ_PT': ('$p_T (GeV)$', '$M^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'EWJ_PTRAP': ('$\\eta/y$', '$p_T^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'EWJ_RAP': ('$\\eta/y$', '$M^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'EWK_MLL': ('$M_{ll} (GeV)$', '$M_{ll}^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'EWK_PT': ('p_T (GeV)', '$M^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'EWK_PTRAP': ('$\\eta/y$', '$p_T^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'EWK_RAP': ('$\\eta/y$', '$M^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'HIG_RAP': ('y', '$M_H^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'HQP_MQQ': ('$M^{QQ} (GeV)$', '$\\mu^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'HQP_PTQ': ('$p_T^Q (GeV)$', '$\\mu^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'HQP_PTQQ': ('$p_T^{QQ} (GeV)$', '$\\mu^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'HQP_YQ': ('y^Q', '$\\mu^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'HQP_YQQ': ('$y^{QQ} (GeV)$', '$\\mu^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'INC': ('0', '$\\mu^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'JET': ('$\\eta$', '$p_T^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'PHT': ('$\\eta_\\gamma$', '$E_{T,\\gamma}^2 (GeV^2)$', '$\\sqrt{s} (GeV)$'),
'SIA': ('z', '$Q^2 (GeV^2)$', 'y')

This mapping is declared as validphys.commondataparser.KINLABEL_LATEX
in the python code.

The three kinematic variables are referred to as k1, k2 and k3
in the plotting files. For example, for DIS processes, k1 refers to x,
k2 to Q, and k3 to y.

These kinematic values can be overridden by some transformation of
them. For that purpose, it is possible to define
a kinematics_override key. The value must be a class defined
in: validphys2/src/validphys/plotoptions/kintransforms.py

The class must have a __call__ method that takes three parameters:
(k1, k2 k3) as defined in the dataset implementation, and returns
three new values ('k1', 'k2', k3') which are the “transformed”
kinematical variables, which will be used for plotting purposes every
time the kinematic variables k1, k2 and k3 are referred to.
Additionally, the class must implement a new_labels method, that
takes the old labels and returns the new ones, and an xq2map
function that takes the kinematic variables and returns a tuple of (x,
Q²) with some approximate values. An example of such transform is:

class dis_sqrt_scale:
 def __call__(self, k1, k2, k3):
 ecm = sqrt(k2/(k1*k3))
 return k1, sqrt(k2), ceil(ecm)

 def new_labels(self, *old_labels):
 return ('x', 'Q (GeV)', r'$\sqrt{s} (GeV)$')

 def xq2map(self, k1, k2, k3, **extra_labels):
 return k1, k2*k2

Additional labels can be specified by declaring an extra_labels
key in the plotting file, and specifying for each new label a value
for each point in the dataset.

For example:

extra_labels:
 idat2bin: [0, 0, 0, 0, 0, 0, 0, 0, 100, 100, 100, 100, 100, 200, 200, 200, 300, 300, 300, 400, 400, 400, 500, 500, 600, 600, 700, 700, 800, 800, 900, 1000, 1000, 1100]

defines one label where the values for each of the datapoints are
given in the list. Note that the name of the extra_label (in this case
idat2bin is completely arbitrary, and will be used for plotting
purposes (LaTeX math syntax is allowed as well). However, adding labels
manually for each point can be tedious. This should only be reserved
for information that cannot be recovered from the kinematics as
defined in the CommonData file. Instead, new labels can be generated
programmatically: every function defined in validphys2/src/validphys/plotoptions/labelers.py
is a valid label. These functions take as keyword arguments the
(possibly transformed) kinematical variables, as well as any extra
label declared in the plotting file. For example, one might declare:

def high_xq(k1, k2, k3, **kwargs):
 return k1 > 1e-2 and k2 > 1000

Note that it is convenient to always declare the **kwargs
parameter so that the code doesn’t crash when the function is called
with extra arguments. Similarly to the kinematics transforms, it is
possible to decorate them with a @label describing a nicer latex
label than the function name. For example:

@label(r"$I(x>10^{-2})\times I(Q > 1000 GeV)$")
def high_xq(k1, k2, k3, **kwargs):
 return (k1 > 1e-2) & (k2 > 1000)

Plotting and grouping

The variable in which the data is plotted is simply
declared as

x: <label>

For example:

x: k1

If a line_by key is specified, variables with different values for
each of the labels listed, will be represented as different lines. For
example,

line_by:
 - k2

for DIS would mean that the data in the same Q bin is plotted in the
same line.

Similarly, it is possible to define a figure_by key: Points
with different values for the listed keys will be split across
separated figures. For example:

figure_by:
 - idat2bin
 - high_xq

Transforming the result

By default the y axis represents the central value and error. However,
it is possible to define a results_transform in the plotting file:

result_transform: qbinexp

The value must be a function declared in
validphys2/src/validphys/plotoptions/results_transform.py
taking the error, the central value, as well as all the labels, and
returning a new error and central value. For example:

def qbinexp(cv, error, **labels):
 q = labels['k2']
 qbin = bins(q)
 return 10**qbin*cv, 10**qbin*error

Plotting options

Several plotting options can be specified.
These include

	x/y_scale: ‘linear’ or ‘log’.

	x/y_label: Any string, possibly latex formatted. Note that the
x_label will be deduced automatically.

Overriding configuration for normalized plots

When the results are to be plotted as a ratio, it may be convenient to
alter the configuration of the plots, for example by changing the
line_by labels into figure_by (because otherwise the points would
overlap), or by changing the scale from log to linear. To do so, we
specify the options we want to override in a normalize key.
Everything defined inside will take precedence when we produce a ratio
plot and will be ignored for absolute value plots. For example:

x: k1

x_label: '$\left\|\eta/y\right|$'

y_label: '$d\sigma/dy$ (fb)'

line_by:
 - Boson

normalize:
 figure_by:
 - Boson

extra_labels:
 Boson: ["W^+","W^+","W^+","W^+","W^+","W^+","W^+","W^+","W^+","W^+","W^+","W^-","W^-","W^-","W^-","W^-","W^-","W^-","W^-","W^-","W^-","W^-","Z","Z","Z","Z","Z","Z","Z","Z"]

Here, we would split the data by different figure files for each
unique value of the key Boson (which is defined explicitly as an
extra_label), but only one plot with the three bosons split across
different lines will be produced in absolute value plots.

Metadata keys

Plotting files are also used to define metadata related to the various
datasets. These keys include:

	experiment (string): The experiment which produced the experimental data.

	process_description (string): A description of the physical process
associated to the dataset. This would typically be defined in the
PLOTTINGTYPE files.

	data_reference (string): a LaTeX key corresponding to the
reference of the experimental paper.

	theory_reference (string): a LaTeX key corresponding to the
codes used to compute the theory predictions.

Example

A complete example (all keys are optional) looks like this:

dataset_label: "Some hypothetical dataset"
experiment: ATLAS
x: k3
x_scale: log
kinematics_override: dummy_transform #defined in transforms.py
line_by:
 - k2

figure_by:
 - idat2bin #defined below
 - high_xq #defined in labelers.py

normalize: # Change the scale for ratio plots
 x_scale: linear

extra_labels:
 idat2bin: [0, 0, 0, 0, 0, 0, 0, 0, 100, 100, 100, 100, 100, 200, 200, 200, 300, 300, 300, 400, 400, 400, 500, 500, 600, 600, 700, 700, 800, 800, 900, 1000, 1000, 1100]

 Previous
 Next

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

