

 	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Module code
	validphys.pineparser
	

 Source code for validphys.pineparser

"""
 Loader for the pineappl-based FKTables

 The FKTables for pineappl have ``pineappl.lz4`` and can be utilized
 directly with the ``pineappl`` cli as well as read with ``pineappl.fk_table``
"""
import logging

import numpy as np
import pandas as pd

from validphys.commondataparser import EXT, TheoryMeta
from validphys.coredata import FKTableData

log = logging.getLogger(__name__)

[docs]class GridFileNotFound(FileNotFoundError):
 """PineAPPL file for FK table not found."""

[docs]def pineko_yaml(yaml_file, grids_folder):
 """Given a yaml_file, returns the corresponding dictionary and grids.

 The dictionary contains all information and we return an extra field
 with all the grids to be loaded for the given dataset.

 Parameters

 yaml_file : pathlib.Path
 path of the yaml file for the given dataset
 grids_folder : pathlib.Path
 path of the grids folder
 check_grid_existence: bool
 if True (default) checks whether the grid exists

 Returns

 yaml_content: dict
 Metadata prepared for the FKTables
 paths: list(list(path))
 List (of lists) with all the grids that will need to be loaded
 """
 # TODO: the theory metadata can be found inside the commondata metadata
 # however, for the time being, pineappl tables contain this information in the `yamldb` database
 # they should be 100% compatible (and if they are not there is something wrong somewhere)
 # so already at this stage, use TheoryMeta parser to get the metadata for pineappl theories
 # Note also that we need to use this "parser" due to the usage of the name "operands" in the yamldb
 theory_meta = TheoryMeta.parser(yaml_file)
 member_paths = theory_meta.fktables_to_paths(grids_folder)
 return theory_meta, member_paths

[docs]def pineko_apfelcomb_compatibility_flags(gridpaths, metadata):
 """
 Prepare the apfelcomb-pineappl compatibility fixes by matching the apfelcomb content
 of the metadata to the grids that are being loaded.

 These fixes can be of only three types:

 - normalization:
 normalization per subgrid

 normalization:
 grid_name: factor

 - repetition_flag:
 when a grid was actually the same point repeated X times
 NNPDF cfactors and cuts are waiting for this repetition and so we need to keep track of it

 repetition_flag:
 grid_name

 Returns

 apfelcomb_norm: np.array
 Per-point normalization factor to be applied to the grid
 to be compatible with the data
 apfelcomb_repetition_flag: bool
 Whether the fktable is a single point which gets repeated up to a certain size
 (for instance to normalize a distribution)
 shift: list(int)
 Shift in the data index for each grid that forms the fktable
 """
 apfelcomb = metadata.apfelcomb
 if apfelcomb is None:
 return None

 # Can't pathlib understand double suffixes?
 operands = [i.name.replace(f".{EXT}", "") for i in gridpaths]
 ret = {}

 # Check whether we have a normalization active and whether it affects any of the grids
 if apfelcomb.normalization is not None:
 norm_info = apfelcomb.normalization
 # Now fill the operands that need normalization
 ret["normalization"] = [norm_info.get(op, 1.0) for op in operands]

 # Check whether the repetition flag is active
 if apfelcomb.repetition_flag is not None:
 if len(operands) == 1:
 ret["repetition_flag"] = operands[0] in apfelcomb.repetition_flag
 else:
 # Just for the sake of it, let's check whether we did something stupid
 if any(op in apfelcomb.repetition_flag for op in operands):
 raise ValueError(f"The yaml info for {metadata['target_dataset']} is broken")

 return ret

def _pinelumi_to_columns(pine_luminosity, hadronic):
 """Makes the pineappl luminosity into the column indices of a dataframe
 These corresponds to the indices of a flattened (14x14) matrix for hadronic observables
 and the non-zero indices of the 14-flavours for DIS

 Parameters

 pine_luminosity: list(tuple(int))
 list with a pair of flavours per channel
 hadronic: bool
 flag for hadronic / DIS observables

 Returns

 list(int): list of labels for the columns
 """
 evol_basis_pids = tuple(
 [22, 100, 21, 200]
 + [200 + n**2 - 1 for n in range(2, 6 + 1)]
 + [100 + n**2 - 1 for n in range(2, 6 + 1)]
)
 flav_size = len(evol_basis_pids)
 columns = []
 if hadronic:
 for i, j in pine_luminosity:
 idx = evol_basis_pids.index(i)
 jdx = evol_basis_pids.index(j)
 columns.append(flav_size * idx + jdx)
 else:
 # The proton might come from both sides
 try:
 columns = [evol_basis_pids.index(i) for _, i in pine_luminosity]
 except ValueError:
 columns = [evol_basis_pids.index(i) for i, _ in pine_luminosity]
 return columns

[docs]def get_yaml_information(yaml_file, theorypath):
 """Reads the yaml information from a yaml compound file

 Transitional function: the call to "pineko" might be to some other commondata reader
 that will know how to extract the information from the commondata
 """
 # The pineappl grids are just stored where the fktables would be, "fastkernel"
 grids_folder = theorypath / "fastkernel"
 return pineko_yaml(yaml_file, grids_folder)

[docs]def pineappl_reader(fkspec):
 """
 Receives a fkspec, which contains the path to the fktables that are to be read by pineappl
 as well as metadata that fixes things like conversion factors or apfelcomb flag.
 The fkspec contains also the cfactors which are applied _directly_ to each of the fktables.

 The output of this function is an instance of FKTableData which can be generated from reading
 several FKTable files which get concatenated on the ndata (bin) axis.

 For more information on the reading of pineappl tables:
 https://pineappl.readthedocs.io/en/latest/modules/pineappl/pineappl.html#pineappl.pineappl.PyFkTable

 About the reader:
 Each pineappl table is a 4-dimensional grid with:
 (ndata, active channels, x1, x2)
 for DIS grids x2 will contain one single number.
 The luminosity channels are given in a (flav1, flav2) format and thus need to be converted
 to the 1-D index of a (14x14) luminosity tensor in order to put in the form of a dataframe.

 All grids in pineappl are constructed with the exact same xgrid,
 the active channels can vary and so when grids are concatenated for an observable
 the gaps are filled with 0s.

 The pineappl grids are such that obs = sum_{bins} fk * f (*f) * bin_w
 so in order to use them together with old-style grids (obs = sum_{bins} fk * xf (*xf))
 it is necessary to remove the factor of x and the normalization of the bins.

 About apfelcomb flags in yamldb files:
 old commondata files and old grids have over time been through various iterations while remaining compatibility between each other,
 and fixes and hacks have been incorporated in one or another
 for the new theory to be compatible with old commpondata it is necessary
 to keep track of said hacks (and to apply conversion factors when required)
 NOTE: both conversion factors and apfelcomb flags will be eventually removed.

 Returns

 validphys.coredata.FKTableData
 an FKTableData object containing all necessary information to compute predictions
 """
 from pineappl.fk_table import FkTable

 pines = []
 for fk_path in fkspec.fkpath:
 try:
 pines.append(FkTable.read(fk_path))
 except BaseException as e:
 # Catch absolutely any error coming from pineappl, give some info and immediately raise
 log.error(f"Fatal error reading {fk_path}")
 raise e

 cfactors = fkspec.load_cfactors()

 # Extract metadata from the first grid
 pine_rep = pines[0]

 # Is it hadronic? (at the moment only hadronic and DIS are considered)
 hadronic = pine_rep.key_values()["initial_state_1"] == pine_rep.key_values()["initial_state_2"]
 # Sanity check (in case at some point we start fitting things that are not protons)
 if hadronic and pine_rep.key_values()["initial_state_1"] != "2212":
 raise ValueError(
 "pineappl_reader is not prepared to read a hadronic fktable with no protons!"
)
 Q0 = np.sqrt(pine_rep.muf2())
 xgrid = np.array([])
 for pine in pines:
 xgrid = np.union1d(xgrid, pine.x_grid())
 xi = np.arange(len(xgrid))
 protected = False

 apfelcomb = pineko_apfelcomb_compatibility_flags(fkspec.fkpath, fkspec.metadata)

 # Process the shifts (if any), shifts is a dictionary with {fktable_name: shift_value}
 # since this parser doesn't know about operations, we need to convert it to a list
 # then we just iterate over the fktables and apply the shift in the right order
 shifts = None
 if (shift_info := fkspec.metadata.shifts) is not None:
 fknames = [i.name.replace(f".{EXT}", "") for i in fkspec.fkpath]
 shifts = [shift_info.get(fname, 0) for fname in fknames]

 # fktables in pineapplgrid are for obs = fk * f while previous fktables were obs = fk * xf
 # prepare the grid all tables will be divided by
 if hadronic:
 xdivision = np.prod(np.meshgrid(xgrid, xgrid), axis=0)
 else:
 xdivision = xgrid[:, np.newaxis]

 partial_fktables = []
 ndata = 0
 for i, p in enumerate(pines):
 # Start by reading possible cfactors if cfactor is not empty
 cfprod = 1.0
 if cfactors:
 for cfac in cfactors[i]:
 cfprod *= cfac.central_value

 # Read the table, remove bin normalization and apply cfactors
 raw_fktable = (cfprod * p.table().T / p.bin_normalizations()).T
 n = raw_fktable.shape[0]

 # Apply the apfelcomb fixes _if_ they are needed
 if apfelcomb is not None:
 if apfelcomb.get("normalization") is not None:
 raw_fktable = raw_fktable * apfelcomb["normalization"][i]
 if apfelcomb.get("repetition_flag", False):
 raw_fktable = raw_fktable[0:1]
 n = 1
 protected = True

 if shifts is not None:
 ndata += shifts[i]

 # Add empty points to ensure that all fktables share the same x-grid upon convolution
 missing_x_points = np.setdiff1d(xgrid, p.x_grid(), assume_unique=True)
 for x_point in missing_x_points:
 miss_index = list(xgrid).index(x_point)
 raw_fktable = np.insert(raw_fktable, miss_index, 0.0, axis=2)
 if hadronic:
 raw_fktable = np.insert(raw_fktable, miss_index, 0.0, axis=3)
 # Check conversion factors and remove the x* from the fktable
 raw_fktable *= fkspec.metadata.conversion_factor / xdivision

 # Create the multi-index for the dataframe
 # for optimized pineappls different grids can potentially have different indices
 # so they need to be indexed separately and then concatenated only at the end
 lumi_columns = _pinelumi_to_columns(p.lumi(), hadronic)
 lf = len(lumi_columns)
 data_idx = np.arange(ndata, ndata + n)
 if hadronic:
 idx = pd.MultiIndex.from_product([data_idx, xi, xi], names=["data", "x1", "x2"])
 else:
 idx = pd.MultiIndex.from_product([data_idx, xi], names=["data", "x"])

 # Now concatenate (data, x1, x2) and move the flavours to the columns
 df_fktable = raw_fktable.swapaxes(0, 1).reshape(lf, -1).T
 partial_fktables.append(pd.DataFrame(df_fktable, columns=lumi_columns, index=idx))

 ndata += n

 # Finallly concatenate all fktables, sort by flavours and fill any holes
 sigma = pd.concat(partial_fktables, sort=True, copy=False).fillna(0.0)

 # Check whether this is a 1-point normalization fktable and, if that's the case, protect!
 if fkspec.metadata.operation == "RATIO" and ndata == 1 and len(pines) == 1:
 # it _might_ be, check whether it is the divisor fktable
 divisor = fkspec.metadata.FK_tables[-1][0]
 name = fkspec.fkpath[0].name.replace(f".{EXT}", "")
 protected = divisor == name

 return FKTableData(
 sigma=sigma,
 ndata=ndata,
 Q0=Q0,
 metadata=fkspec.metadata,
 hadronic=hadronic,
 xgrid=xgrid,
 protected=protected,
)

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

