

 	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Module code
	validphys.chi2grids
	

 Source code for validphys.chi2grids

"""
chi2grids.py

Compute and store χ² data from replicas, possibly keeping the correlations
between pseudorreplica fluctuations between different fits. This is applied
here to parameter determinations such as those of αs.
"""
from collections import namedtuple
import logging

import numpy as np
import pandas as pd

from reportengine import collect
from reportengine.table import table
from validphys.calcutils import calc_chi2

PseudoReplicaExpChi2Data = namedtuple(
 "PseudoReplicaChi2Data", ["group", "ndata", "chi2", "nnfit_index"]
)

log = logging.getLogger(__name__)

[docs]def computed_pseudoreplicas_chi2(
 fitted_make_replicas,
 group_result_table_no_table, # to get the results already in the form of a dataframe
 groups_sqrtcovmat,
):
 """Return a dataframe with the chi² of each replica with its corresponding
 pseudodata (i.e. the one it was fitted with). The chi² is computed by group.
 The index of the output dataframe is
 ``['group', 'ndata' , 'nnfit_index']``
 where ``nnftix_index`` is the name of the corresponding replica
 """
 # Stack the replica pseudodata to have the prediction shape
 r_data = np.stack(fitted_make_replicas, axis=1)

 # Drop data central and theory central which is not useful here
 r_prediction = group_result_table_no_table.drop(columns=["data_central", "theory_central"])

 # Now compute the chi2 in a per-group basis
 diff = r_prediction - r_data
 group_level = r_prediction.index.get_level_values("group")

 # Save the results in a dataframe similar (but not equal) to the old one
 df_output = []
 for group in group_level.unique():
 group_diff = diff.loc[group_level == group]
 its_covmat = groups_sqrtcovmat[group_level == group][group]
 chi2_per_replica = calc_chi2(its_covmat, group_diff)
 ndata = len(group_diff)
 for i, chi2 in enumerate(chi2_per_replica):
 df_output.append(PseudoReplicaExpChi2Data(group, ndata, chi2, i))

 df = pd.DataFrame(df_output, columns=PseudoReplicaExpChi2Data._fields)
 df.set_index(["group", "ndata", "nnfit_index"], inplace=True)
 df.sort_index(inplace=True)
 return df

TODO: Probably fitcontext should set all of the variables required to compute
this. But better setting
them explicitly than setting some, so we require the user to do that.
fits_computed_pseudoreplicas_chi2 = collect(computed_pseudoreplicas_chi2, ("fits",))

dataspecs_computed_pseudorreplicas_chi2 = collect(computed_pseudoreplicas_chi2, ("dataspecs",))

[docs]@table
def export_fits_computed_pseudoreplicas_chi2(fits_computed_pseudoreplicas_chi2):
 """Hack to force writting the CSV output"""
 return fits_computed_pseudoreplicas_chi2

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

