

 	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Module code
	validphys.calcutils
	

 Source code for validphys.calcutils

"""
calcutils.py

Low level utilities to calculate χ² and such. These are used to implement the
higher level functions in results.py
"""
import logging
from typing import Callable

import numpy as np
import pandas as pd
import scipy.linalg as la

log = logging.getLogger(__name__)

[docs]def calc_chi2(sqrtcov, diffs):
 """Elementary function to compute the chi², given a Cholesky decomposed
 lower triangular part and a vector of differences.

 Parameters

 sqrtcov : matrix
 A lower tringular matrix corresponding to the lower part of
 the Cholesky decomposition of the covariance matrix.
 diffs : array
 A vector of differences (e.g. between data and theory).
 The first dimenssion must match the shape of `sqrtcov`.
 The computation will be broadcast over the other dimensions.

 Returns

 chi2 : array
 The result of the χ² for each vector of differences.
 Will have the same shape as ``diffs.shape[1:]``.

 Notes

 This function computes the χ² more efficiently and accurately than
 following the direct definition of inverting the covariance matrix,
 :math:`\chi^2 = d\Sigma^{-1}d`,
 by solving the triangular linear system instead.

 Examples

 >>> from validphys.calcutils import calc_chi2
 >>> import numpy as np
 >>> import scipy.linalg as la
 >>> np.random.seed(0)
 >>> diffs = np.random.rand(10)
 >>> s = np.random.rand(10,10)
 >>> cov = s@s.T
 >>> calc_chi2(la.cholesky(cov, lower=True), diffs)
 44.64401691354948
 >>> diffs@la.inv(cov)@diffs
 44.64401691354948

 """
 # handle empty data
 if not diffs.size:
 return np.full(diffs.shape[1:], np.nan)
 # Note la.cho_solve doesn't really improve things here
 # NOTE: Do not enable check_finite. The upper triangular part is not
 # guaranteed to make any sense.
 vec = la.solve_triangular(sqrtcov, diffs, lower=True, check_finite=False)
 # This sums up the result for the chi² for any input shape.
 # Sum the squares over the first dimension and leave the others alone
 return np.einsum('i...,i...->...', vec, vec)

[docs]def all_chi2(results):
 """Return the chi² for all elements in the result, regardless of the Stats class
 Note that the interpretation of the result will depend on the PDF error type"""
 data_result, th_result = results
 diffs = th_result.rawdata - data_result.central_value[:, np.newaxis]
 return calc_chi2(sqrtcov=data_result.sqrtcovmat, diffs=diffs)

[docs]def central_chi2(results):
 """Calculate the chi² from the central value of the theory prediction to
 the data"""
 data_result, th_result = results
 central_diff = th_result.central_value - data_result.central_value
 return calc_chi2(data_result.sqrtcovmat, central_diff)

[docs]def all_chi2_theory(results, totcov):
 """Like all_chi2 but here the chi² are calculated using a covariance matrix
 that is the sum of the experimental covmat and the theory covmat."""
 data_result, th_result = results
 diffs = th_result.rawdata - data_result.central_value[:, np.newaxis]
 total_covmat = np.array(totcov)
 return calc_chi2(sqrtcov=la.cholesky(total_covmat, lower=True), diffs=diffs)

[docs]def central_chi2_theory(results, totcov):
 """Like central_chi2 but here the chi² is calculated using a covariance matrix
 that is the sum of the experimental covmat and the theory covmat."""
 data_result, th_result = results
 central_diff = th_result.central_value - data_result.central_value
 total_covmat = np.array(totcov)
 return calc_chi2(la.cholesky(total_covmat, lower=True), central_diff)

[docs]def calc_phi(sqrtcov, diffs):
 """Low level function which calculates phi given a Cholesky decomposed
 lower triangular part and a vector of differences. Primarily used when phi
 is to be calculated independently from chi2.

 The vector of differences `diffs` is expected to have N_bins on the first
 axis
 """
 diffs = np.array(diffs)
 return np.sqrt(
 (np.mean(calc_chi2(sqrtcov, diffs), axis=0) - calc_chi2(sqrtcov, diffs.mean(axis=1)))
 / diffs.shape[0]
)

[docs]def bootstrap_values(
 data, nresamples, *, boot_seed: int = None, apply_func: Callable = None, args=None
):
 """General bootstrap sample

 `data` is the data which is to be sampled, replicas is assumed to
 be on the final axis e.g N_bins*N_replicas

 `boot_seed` can be specified if the user wishes to be able to
 take exact same bootstrap samples multiple times, as default it is
 set as None, in which case a random seed is used.

 If just `data` and `nresamples` is provided, then `bootstrap_values`
 creates N resamples of the data, where each resample is a Monte Carlo
 selection of the data across replicas. The mean of each resample is
 returned

 Alternatively, the user can specify a function to be sampled `apply_func`
 plus any additional arguments required by that function.
 `bootstrap_values` then returns `apply_func(bootstrap_data, *args)`
 where `bootstrap_data.shape = (data.shape, nresamples)`. It is
 critical that `apply_func` can handle data input in this format.
 """
 data = np.atleast_2d(data)
 N_reps = data.shape[-1]
 bootstrap_data = data[
 ..., np.random.RandomState(boot_seed).randint(N_reps, size=(N_reps, nresamples))
]
 if apply_func is None:
 return np.mean(bootstrap_data, axis=-2)
 else:
 return apply_func(bootstrap_data, *args)

[docs]def get_df_block(matrix: pd.DataFrame, key: str, level):
 """Given a pandas dataframe whose index and column keys match, and data represents a symmetric
 matrix returns a diagonal block of this matrix corresponding to `matrix`[key`, key`] as a numpy
 array

 addtitionally, the user can specify the `level` of the key for which the cross section is being
 taken, by default it is set to 1 which corresponds to the dataset level of a theory covariance
 matrix
 """
 block = matrix.xs(key, level=level, axis=0).xs(key, level=level, axis=1).values
 return block

[docs]def regularize_covmat(covmat: np.array, norm_threshold=4):
 """Given a covariance matrix, performs a regularization which is equivalent
 to performing `regularize_l2` on the sqrt of `covmat`: the l2 norm of
 the inverse of the correlation matrix calculated from `covmat` is set to be
 less than or equal to `norm_threshold`. If the input covmat already fulfills
 this criterion it is returned.

 Parameters

 covmat : array
 a covariance matrix which is to be regularized.
 norm_threshold : float
 The acceptable l2 norm of the sqrt correlation matrix, by default
 set to 4.

 Returns

 new_covmat : array
 A new covariance matrix which has been regularized according to
 prescription above.

 """
 # square up threshold since we have cov not sqrtcov
 sqr_threshold = norm_threshold**2
 d = np.sqrt(np.diag(covmat))[:, np.newaxis]
 corr = covmat / d / d.T
 # eigh gives eigenvals in ascending order
 e_val, e_vec = la.eigh(corr)
 # if eigenvalues are close to zero, can be negative
 if e_val[0] < 0:
 log.warning(
 "Negative eigenvalue encountered in correlation matrix: %s. "
 "Assuming eigenvalue should be zero and is negative due to numerical "
 "precision.",
 e_val[0],
)
 if e_val[0] > 1 / sqr_threshold:
 return covmat
 new_e_val = np.clip(e_val, a_min=1 / sqr_threshold, a_max=None)
 return ((e_vec * new_e_val) @ e_vec.T) * d * d.T

[docs]def regularize_l2(sqrtcov, norm_threshold=4):
 r"""Return a regularized version of `sqrtcov`.

 Given `sqrtcov` an (N, nsys) matrix, such that it's
 gram matrix is the covariance matrix (`covmat = sqrtcov@sqrtcov.T`), first
 decompose it like ``sqrtcov = D@A``, where `D` is a positive diagonal matrix
 of standard deviations and `A` is the "square root" of the correlation
 matrix, ``corrmat = A@A.T``. Then produce a new version of `A` which removes
 the unstable behaviour and assemble a new square root covariance matrix,
 which is returned.

 The stability condition is controlled by `norm_threshold`. It is

 .. math::

 \left\Vert A^+ \right\Vert_{L2}
 \leq \frac{1}{\text{norm_threshold}}

 A+ is the pseudoinverse of A, `norm_threshold` roughly corresponds to the
 sqrt of the maximimum relative uncertainty in any systematic.

 Parameters

 sqrtcov : 2d array
 An (N, nsys) matrix specifying the uncertainties.
 norm_threshold : float
 The tolerance for the regularization.

 Returns

 newsqrtcov : 2d array
 A regularized version of `sqrtcov`.
 """

 d = np.sqrt(np.sum(sqrtcov**2, axis=1))[:, np.newaxis]
 sqrtcorr = sqrtcov / d
 u, s, vt = la.svd(sqrtcorr, full_matrices=False)
 if 1 / s[-1] <= norm_threshold:
 return sqrtcov
 snew = np.clip(s, a_min=1 / norm_threshold, a_max=None)
 return u * (snew * d) @ vt

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

