

 	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Module code
	n3fit.tests.test_hyperopt
	

 Source code for n3fit.tests.test_hyperopt

"""
 Test hyperoptimization features
"""
import json
import pathlib
import shutil
import subprocess as sp
import tarfile
import time

from numpy.testing import assert_approx_equal

from n3fit.hyper_optimization import rewards

[docs]def test_rewards():
 """Ensure that rewards continue doing what they are supposed to do"""
 losses = [0.0, 1.0, 2.0]
 assert_approx_equal(rewards.average(losses), 1.0)
 assert_approx_equal(rewards.best_worst(losses), 2.0)
 assert_approx_equal(rewards.std(losses), 0.816496580927726)

REGRESSION_FOLDER = pathlib.Path(__file__).with_name("regressions")
QUICKNAME = "quickcard"
EXE = "n3fit"
REPLICA = "1"

[docs]def load_data(info_file):
 """Loads the information of the fit from the json files"""
 with open(info_file, "r", encoding='utf-8') as file:
 return json.load(file)

[docs]def test_restart_from_pickle(tmp_path):
 """Ensure that after a hyperopt restart, the testing continues
 from the same point.
 The test is set up so that it does one trial, then stops, then a second one
 And then this is compared with two trials one after the other.

 The test checks that the starting point of the second trial is the same in both cases
 """
 # Prepare the run
 quickcard = f"hyper-{QUICKNAME}.yml"
 quickpath = REGRESSION_FOLDER / quickcard

 # Set the test up so that it does one trial, then stops, then does another one
 # and then we do two
 n_trials_stop = 1
 n_trials_total = 2
 output_restart = tmp_path / f"run_{n_trials_stop}_trials_and_then_{n_trials_total}_trials"
 output_direct = tmp_path / f"run_{n_trials_total}_trials"

 # cp runcard to tmp folder
 shutil.copy(quickpath, tmp_path)
 # run some trials for the first time
 sp.run(
 f"{EXE} {quickpath} {REPLICA} --hyperopt {n_trials_stop} -o {output_restart}".split(),
 cwd=tmp_path,
 check=True,
)
 # restart and calculate more trials
 sp.run(
 f"{EXE} {quickpath} {REPLICA} --hyperopt {n_trials_total} "
 f"-o {output_restart} --restart".split(),
 cwd=tmp_path,
 check=True,
)
 # start again and calculate all trials at once
 sp.run(
 f"{EXE} {quickpath} {REPLICA} --hyperopt {n_trials_total} " f"-o {output_direct}".split(),
 cwd=tmp_path,
 check=True,
)

 # read up generated json files
 restart_json_path = f"{output_restart}/nnfit/replica_{REPLICA}/tries.json"
 restart_json = load_data(restart_json_path)
 direct_json_path = f"{output_direct}/nnfit/replica_{REPLICA}/tries.json"
 direct_json = load_data(direct_json_path)

 # minimum check: the generated list of nested dictionaries have same lenght
 assert len(restart_json) == len(direct_json)

 for i in range(n_trials_total):
 # check that the files share exactly the same hyperopt history
 assert restart_json[i]['misc'] == direct_json[i]['misc']
 assert restart_json[i]['state'] == direct_json[i]['state']
 assert restart_json[i]['tid'] == direct_json[i]['tid']
 assert restart_json[i]['misc']['idxs'] == direct_json[i]['misc']['idxs']

 # Note that it doesn't check the final loss of the second trial

[docs]def test_parallel_hyperopt(tmp_path):
 """Ensure that the parallel implementation of hyperopt with MongoDB works as expected."""
 # Prepare the run
 quickcard = f"hyper-{QUICKNAME}.yml"
 quickpath = REGRESSION_FOLDER / quickcard

 # Define number of trials and number of mongo-workers to launch
 n_trials = 6
 n_mongo_workers = 3

 # Set up output directories
 output_sequential = tmp_path / "run_hyperopt_sequential"
 output_parallel = tmp_path / "run_hyperopt_parallel"

 # cp runcard to tmp folder
 shutil.copy(quickpath, tmp_path)

 # Run hyperopt sequentially
 start_time = time.time()
 sp.run(
 f"{EXE} {quickpath} {REPLICA} --hyperopt {n_trials} " f"-o {output_sequential}".split(),
 cwd=tmp_path,
 check=True,
)
 end_time = time.time()
 sequential_run_time = end_time - start_time

 # Run hyperopt in parallel
 start_time = time.time()
 sp.run(
 f"{EXE} {quickpath} {REPLICA} --hyperopt {n_trials} "
 f"--parallel-hyperopt --num-mongo-workers {n_mongo_workers} "
 f"-o {output_parallel}".split(),
 cwd=tmp_path,
 check=True,
)
 end_time = time.time()
 parallel_run_time = end_time - start_time

 # Read up generated json files
 sequential_json_path = f"{output_sequential}/nnfit/replica_{REPLICA}/tries.json"
 sequential_json = load_data(sequential_json_path)
 parallel_json_path = f"{output_parallel}/nnfit/replica_{REPLICA}/tries.json"
 parallel_json = load_data(parallel_json_path)

 # Check that the parallel run time is lower than the sequential one
 assert parallel_run_time < sequential_run_time

 # Check that the final json files have the same number of trials
 assert len(parallel_json) == len(sequential_json)

 for i in range(n_trials):
 # Check that the files share the same content
 assert len(parallel_json[i]['misc']) == len(sequential_json[i]['misc'])
 assert len(parallel_json[i]['result']) == len(sequential_json[i]['result'])

 # Note: cannot check that they share exactly the same history
 # as the hyperopt algorithm depends on the results from previous runs
 # which is obviously different between parallel and sequential runs

[docs]def clean_up_database(tmp_path, database_name):
 """Stops the MongoDB database."""
 directory_path = f"{tmp_path}/{database_name}"
 try:
 sp.run(f"rm -r {directory_path}", shell=True, check=True)
 except (sp.CalledProcessError, OSError) as err:
 msg = f"Error cleaning up database: {err}"
 raise EnvironmentError(msg) from err

[docs]def get_tar_size(filetar):
 """Returns the size of a tar file."""

 def tar_size(tar):
 return sum(member.size for member in tar.getmembers())

 with tarfile.open(filetar, 'r') as tar:
 size = tar_size(tar)
 return size

[docs]def test_restart_from_tar(tmp_path):
 """Ensure that our parallel hyperopt restart works as expected."""
 # Prepare the run
 quickcard = f"hyper-{QUICKNAME}.yml"
 quickpath = REGRESSION_FOLDER / quickcard

 # Set up some options
 n_mongo_workers = 3
 n_trials_stop = 3
 n_trials_total = 6
 output = tmp_path / "output"
 database_name = f"hyperopt-db-{output.name}"

 # cp runcard to tmp folder
 shutil.copy(quickpath, tmp_path)
 # run some trials for the first time
 sp.run(
 f"{EXE} {quickpath} {REPLICA} --hyperopt {n_trials_stop} "
 f"--parallel-hyperopt --num-mongo-workers {n_mongo_workers} "
 f"-o {output}".split(),
 cwd=tmp_path,
 check=True,
)
 json_path = f"{output}/nnfit/replica_{REPLICA}/tries.json"
 tar_name = f"{output}/nnfit/replica_{REPLICA}/{database_name}.tar.gz"
 initial_json = load_data(json_path)
 initial_tar_size = get_tar_size(tar_name)

 # just in case, remove old database files to ensure that the restart occurs via tar file
 clean_up_database(tmp_path, database_name)

 # restart and calculate more trials
 sp.run(
 f"{EXE} {quickpath} {REPLICA} --hyperopt {n_trials_total} "
 f"--parallel-hyperopt --num-mongo-workers {n_mongo_workers} "
 f"-o {output} --restart".split(),
 cwd=tmp_path,
 check=True,
)
 final_json = load_data(json_path)
 final_tar_size = get_tar_size(tar_name)

 # check if the calculations went well
 assert len(initial_json) == n_trials_stop
 assert len(final_json) == n_trials_total

 # check if the tar files were generated correctly
 assert tarfile.is_tarfile(tar_name) is True

 # check if the final tar file was updated after restart
 assert final_tar_size > initial_tar_size

 for i in range(n_trials_stop):
 # check that the json files share exactly the same hyperopt history until the restart
 assert initial_json[i]['misc'] == final_json[i]['misc']
 assert initial_json[i]['state'] == final_json[i]['state']
 assert initial_json[i]['tid'] == final_json[i]['tid']
 assert initial_json[i]['result'] == final_json[i]['result']

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

