

 	Getting started
	Fitting code: n3fit
	Code for data: validphys
	Handling experimental data: Buildmaster
	Storage of data and theory predictions
	Theory
	Chi square figures of merit
	Contributing guidelines and tools
	Releases and compatibility policy
	Continuous integration and deployment
	Servers
	External codes
	Tutorials

 NNPDF

 	
	Module code
	n3fit.hyper_optimization.filetrials
	

 Source code for n3fit.hyper_optimization.filetrials

"""
 Custom hyperopt trial object for persistent file storage
 in the form of json and pickle files within the nnfit folder
"""
import json
import logging
import pickle

from hyperopt import Trials, space_eval

from validphys.hyperoptplot import HyperoptTrial

log = logging.getLogger(__name__)

Note: the plan would be to do a PR in hyperopt's main repository
because these are things generic and useful enough that should be
in hyperopt by default. But for now it will stay here.

[docs]def space_eval_trial(space, trial):
 """
 This function is a wrapper around hyperopt's space eval in order to add
 to the json a dictionary containing the human-readable values.
 i.e., the standard json would say: "optimizer = [5]" and we want it to say optimizer = "Adam"
 But all this function does before calling hyperopt's space_eval is to "unlist" the items.
 If you think space_eval should do that by itself, you are not alone
 https://github.com/hyperopt/hyperopt/issues/383#issuecomment-378561408

 # Arguments:
 - `space`: the dictionary containing the hyperopt space samplers we pass
 to the hyperparametrizable function
 - `trial`: trial dictionary. This is a dictionary containing (among other things)
 the list of parameters that were tried for this iteration of hyperopt

 # Returns:
 A dictionary containing the values of all the parameters in a human-readable format
 """
 for_eval = {}
 for key, values in trial["misc"]["vals"].items():
 if values:
 for_eval[key] = values[0]
 else:
 for_eval[key] = None
 ret = space_eval(space, for_eval)
 # If the result includes a trial, expand it
 if isinstance(ret.get("parameters"), HyperoptTrial):
 used_trial = ret.pop("parameters")
 ret = dict(ret, **used_trial.params)
 return ret

[docs]class FileTrials(Trials):
 """
 Stores trial results on the fly inside the nnfit replica folder

 Parameters

 replica_path: path
 Replica folder as generated by n3fit
 parameters: dict
 Dictionary of parameters on which we are doing hyperoptimization
 """

 def __init__(self, replica_path, parameters=None, **kwargs):
 self._store_trial = False
 self._json_file = replica_path / "tries.json"
 self.pkl_file = replica_path / "tries.pkl"
 self._parameters = parameters
 self._rstate = None
 super().__init__(**kwargs)

 @property
 def rstate(self):
 """
 Returns the rstate attribute.

 Notes:
 :func:`rstate` stores a `numpy.random.Generator` which is important to make
 hyperopt restarts reproducible in the hyperparameter space. It can
 be passed later as the `rstate` parameters of `hyperopt.fmin`.
 """
 return self._rstate

 @rstate.setter
 def rstate(self, random_generator):
 """
 Sets the rstate attribute.

 # Arguments:
 - `random_generator`: `numpy.random.Generator`

 Example

 >>> import numpy as np
 >>> from n3fit.hyper_optimization.filetrials import FileTrials
 >>>
 >>> trials = FileTrials(replica_path_set, parameters=parameters)
 >>> trials.rstate = np.random.default_rng(42)
 """
 self._rstate = random_generator

[docs] def refresh(self):
 """
 This is the "flushing" method which is called at the end of every trial to
 save things in the database. We are are overloading it in order to also write
 to a json file with every single trial.
 """
 super().refresh()

 # write json to disk
 if self._store_trial:
 log.info("Storing scan in %s", self._json_file)
 local_trials = []
 for idx, t in enumerate(self._dynamic_trials):
 local_trials.append(t)
 local_trials[idx]["misc"]["space_vals"] = space_eval_trial(self._parameters, t)

 all_to_str = json.dumps(local_trials, default=str)
 with open(self._json_file, "w") as f:
 f.write(all_to_str)

 # The two methods below are just a stupid overloading to avoid writing to the
 # database twice
[docs] def new_trial_ids(self, n):
 self._store_trial = False
 return super().new_trial_ids(n)

[docs] def new_trial_docs(self, tids, specs, results, miscs):
 self._store_trial = True
 return super().new_trial_docs(tids, specs, results, miscs)

[docs] def to_pkl(self):
 """Dump `FileTrials` object into a pickle file."""
 with open(self.pkl_file, "wb") as file:
 pickle.dump(self, file)

[docs] @classmethod
 def from_pkl(cls, pickle_filepath):
 """
 Load and return an instance of `FileTrials` from a pickle file.

 If a pickle file from previous run is present this method can be used
 to instantiate an initial `FileTrials` object to restart.
 """
 try:
 with open(pickle_filepath, "rb") as file:
 return pickle.load(file)
 except FileNotFoundError as err:
 raise FileNotFoundError(
 "Failed to open 'tries.pkl' pickle file for restarting. "
 f"Please ensure it is located in: {pickle_filepath}"
) from err

 © Copyright 2021, NNPDF collaboration.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

